Healthy Buildings for People: Multi-scaled Approach for Improving Indoor Air Quality

SyracuseCoE Research & Technology Forum
Thursday, October 20th at 3:00 pm

REGISTER:

IN-PERSON | VIRTUAL

Diagram of multi-scale IAQ strategies
Click to view multi-scale IAQ strategies

The unprecedented coronavirus pandemic has infected more than 620 million people and taken over 6 million lives globally. The most common way COVID-19 is transmitted is from one person to another through small airborne particles. Indoor air quality research is paramount to moving forward and keeping people safe and businesses open. Syracuse University has been collaborating with Carrier Corporation to develop indoor air quality (IAQ) strategies that help to meet the current challenges of living, working and traveling in indoor spaces during a pandemic and better prepare for possible future epidemics and pandemics.

This R&T forum will introduce Carrier’s Healthy Building Program, and the important collaborative research with Syracuse University that will contribute to the design of risk mitigation and IAQ strategies – while considering effectiveness, cost and scale. These findings contribute to standards, guidelines and best practices needed to develop effective and sustainable strategies. These include multi-scale IAQ control strategies at building, room, personal and breathing-zone levels and consider outdoor ventilation, filtration systems, air distribution and cleaning methods, personal ventilation and masks.

Presentations

Michael Birnkrant, Healthy Buildings and Homes Engineering Lead, Carrier Corporation

Carrier’s Healthy Building Program: Challenges and opportunities When Focusing on People

Dr. Birnkrant leads Carrier’s Indoor Air Quality group, pioneering new HVAC solutions to improve human health in buildings, recently delivering a layered strategy for pandemic resilience in buildings. He earned a bachelor’s degree from Rutgers University and doctorate degree from Drexel University.

Jianshun “Jensen” Zhang, Executive Director, SyracuseCoE, Professor and Director, Building Energy and Environmental Systems Laboratory, Department of Mechanical and Aerospace Engineering, Syracuse University

Multiscale Strategies for Improving IAQ and Reducing the Risk of Infectious Disease Transmission

Dr. Zhang has more than 30 years of research experience in built environmental systems  (BES) and is a professor of mechanical and aerospace engineering in the College of Engineering & Computer Science at Syracuse University. He is one of three co-leaders of the University’s Energy and Environment research cluster and leads the Heathy and Intelligent Built Environments subcluster. Zhang also serves as the director of the Building Energy and Environmental Systems Laboratory at Syracuse University. Read Dr. Zhang’s full bio here.

This forum will be moderated by Jianshun “Jensen” Zhang.

 

 

Call for Proposals for Round 2 of the 2022 SyracuseCoE Innovation Fund

SyracuseCOE announced that it is accepting proposals for up to $10,000 from current and new Partners, including the larger University community. The Innovation Fund is funded by member companies of the SyracuseCoE Partner Program to help companies overcome barriers in the process of commercializing potentially transformative innovations. Read more about the Innovation Fund and apply here.

Deadline is Thursday, October 20th, 5:00 pm

Companies at all partner levels—Industry, Affiliate and Start-Up—are invited to apply. Projects must address a challenge within SyracuseCoE’s core focus areas, which include indoor environmental quality, clean and renewable energy, and water resources. Collaborations with academic researchers from Partner institutions are strongly encouraged; however, proposals must be submitted and led by SyracuseCoE Partner firms.

Previous companies that received Innovation Fund awards include:

Visit the SyracuseCoE Innovation Fund webpage to see how other partners have used these funds.

Applications, due by Thursday, September 15th, at 5 p.m. ET, will be invited to give a proposal pitch, with a panel of judges. If you’re interested in joining the Partner Program, contact Tamara Rosanio at tlrosani@syr.edu.

Eric A. Schiff Steps Down After Leading SyracuseCoE through Unprecedented Times

Following more than two years of excellent service, Eric Schiff has stepped down from his role as interim executive director of SyracuseCoE, with the appointment of Jianshun “Jensen” Zhang as executive director. Schiff took on the half-time position May 1 of 2020 and led the Center through the public health crisis of the COVID-19 pandemic. He provided careful thought leadership and captured opportunities to bolster critical research communications through webinars, research briefs and via local and national media, as scientists recognized that COVID-19 spreads indoors and swift indoor air quality innovation was needed.

Prior to his position at SyracuseCoE, he was the chair of the Department of Physics in the College of Arts and Sciences and has been a professor of physics at Syracuse University since 1981. The Center benefited from Schiff’s long history leading complex, multidisciplinary projects that require industry and academic collaboration to innovate energy-related problems through research, development and demonstrations. He has been a principal investigator for externally funded research projects from government agencies (Department of Energy, National Science Foundation and the Empire State Development Corp.) and corporations (United Solar Ovonic LLC, Boeing Inc., First Solar Inc. and SRC Inc.). From 2014-17, he was granted leave to serve as a program director at ARPA-E, an agency of the Department of Energy.

“There have been challenges, but also unprecedented opportunities to address the public health crisis through innovation, particularly in the indoor air quality and environmental systems arenas. Eric was instrumental in supporting SyracuseCoE researchers and companies to develop impactful solutions through technology and research innovations.” says Bing Dong, SyracuseCoE associate director. “It has been a privilege working with him and we thank him for his dedication, mentorship and leadership.”

As he returns to his full-time position in the physics department, Schiff will continue serving as principal investigator on SyracuseCoE’s EPIC Buildings Program, funded by the U.S. Department of Energy

SyracuseCoE Awards $30,000 to Three Local Companies for Product Development and Technology Innovation 

Three New York State companies have been awarded $30,000 in the first round of the 2022 SyracuseCoE Innovation Fund competition. For this round, SyracuseCoE Partner companies were invited to submit proposals in SyracuseCoE’s focus areas of indoor environmental quality and building energy efficiency, clean and renewable energy, and water resources. Projects that include research engagements with faculty and students, support for product development and testing, market analyses and proposal match requirements were encouraged. Awards for this program are funded by member companies of the SyracuseCoE Partner Program with the purpose of helping companies advance product development and technological innovation. 

See previously awarded projects. 

The 2022 winning projects are: 

  • Power Converter Development for Off-Grid Renewables, Mission Drives – This project will help develop next generation electronics for off-grid solar, wind and storage applications with a longer-term path of revolutionizing power conversion technology generically.  This program will complete a preliminary design of a new off-grid system configuration that is more flexible and lower cost. 
  • HABAlert: AI-Powered Real-Time Harmful Algal Bloom Monitoring, BloomOptix & Ramboll – HABAlert is a mobile, cost-effective, handheld harmful algal bloom (HAB) monitoring system that can detect and quantify the presence of HAB-causing cyanobacteria in 10 minutes or less. Using artificial intelligence and a cellphone-based miniature microscope, HABAlert can provide users with cyanobacterial ID and counts in near-real-time, replacing traditional methods which require multi-day processing times. 
  • MAKO Smart EV Charging Station, M3 Innovation, based at SyracuseCoE, is developing a smart EV charging station and gateway that integrates seamlessly into their Sports Lighting Platform and eliminates the barriers of cost and added infrastructure to install conventional charging stations.

“The Innovation Fund awards are intended to help companies bridge the gap to commercialization of new products, as well as to provide thoughtful, constructive feedback from a panel of reviewers with expertise in the application of new technology in the marketplace,” said Eric Schiff, SyracuseCoE executive director. “The projects highlight Central New York’s expertise in environmental and energy systems, as well as area companies’ enthusiasm for innovation and commercialization of new technologies.” 

With these awards, SyracuseCoE has supported more than 49 clean energy commercialization projects by 30 companies throughout New York State, totaling over $525,000. Participating companies have reported more than 176 jobs created and over $3,000,000 in additional funding leveraged from the Innovation Fund projects.  

Eligibility for Innovation Fund awards is extended to all current members of the SyracuseCoE Partner Program. Proposals may include collaborations with non-Partner Program firms and academic partners; however, proposals must be submitted and led by members of the Partner Program. 

Learn more about the Partner Program or contact Tammy Rosanio at tlrosani@syr.edu. 

Innovation through Law: Importance of Early Stage Research

Presentation by the New York State Science & Technology Law Center located at the Innovation Law Center, Syracuse University College of Law

Recorded on March 23, 2022

The Innovation Law Center (ILC) provides legal research, education, and information useful to assessing the commercialization prospects for new technology. The research is also useful when bringing new technologies from an early stage to investment ready. When it comes to commercializing new technology, knowing what you don’t know is half the battle. The ILC provides entrepreneurs and companies research important to identifying potential challenges and devise effective strategies to successfully bring that technology to market. Research includes prior art searches, market and competitor analysis, and regulatory landscapes. The ILC has helped hundreds of companies and institutions make their technology vision become a commercial reality.

If you are a company or institution focused on bringing new technology to market, the ILC is available to assist and guide you. Established in 1990, the ILC’s technology commercialization academic and applied learning programs were the first of their kind to examine the legal principles necessary to usher science and technology innovation from its earliest stages to successful commercialization.

Learn more about the importance of early-stage research in the development of intellectual property and new technologies, as well as the IP, markets and regulatory assistance available from the Innovation Law Center to support companies in the EPIC Buildings regional cluster.

Learn about resources are available for your company through the EPIC Buildings Program, or:

FILL OUT THIS SURVEY to tell us about your company.

Moderator:

Sarah Klee Hood, Senior Director of Operations, The Tech Garden

Speakers:

Caitlin Zubrowski, Upstate Entrepreneurs-in-Residence Program Manager, NYSERDA

Brian Gerling, J.D., Director, Innovation Law Center, NYS Science & Technology Law Center

Molly Zimmerman, Managing Director, New York State Science & Technology Law Center at Syracuse University

Dominick Danna, B.A. Chemistry, B.S.E., Engineer-In-Residence, Innovation Law Center, Market Expert, NYS Science & Technology Law Center, Adjunct Professor, Syracuse University College of Law

David Eilers, M.B.A., Market Expert, Innovation Law Center, Adjunct Professor, Whitman School of Management, Syracuse University College of Law

Cecily Capo, J.D. Candidate, Syracuse University College of Law

Ryan Milcarek, Assistant Professor at Ira A. Fulton Schools of Engineering at Arizona State University

Ellie Rusling, CEO, MicroEra Power

Tom Vaccaro, Engineering Manager, National Grid

NYSTAR, the New York Science, Technology, and Innovation division of Empire State Development is the primary funding source for the NYS Science and Technology Law Center at the ILC. New York State offers resources designed to enable new and existing businesses to become more competitive through the use of innovative technologies. Empire State Development’s Division of Science, Technology and Innovation (NYSTAR) programs and centers emphasize the importance of working with industry as a way to leverage New York State’s technology strengths to produce new products and promote economic development.

 

Opportunities in Decarbonizing Buildings through Controls and Electrification

Karma Sawyer, Pacific Northwest National Laboratory
Tuesday, March 8, 2022
A SyracuseCoE Research & Technology Forum

Today’s buildings use 74% of our nation’s electricity and account for 35% of our carbon emissions. The associated costs to occupants and the country are enormous. In the future buildings will be affordable, carbon-free, comfortable, and healthy. This exciting vision for the building sector relies on marketing products for increased electrification of building loads and for state-of-the-art building controls.

Dr. Karma Sawyer, Director of the Electricity Infrastructure & Buildings Division at PNNL, discussed innovative approaches to controlling and optimizing smart, electric devices in buildings in coordination with the grid and distributed energy resources. These will facilitate the decarbonization of the power grid while ensuring resilience and reliability.

Dr. Sawyer also discussed opportunities related to technology transfer and user facilities at U.S. Department of Energy National Labs, including Pacific Northwest National Lab and others.

Presenter:
Karma Sawyer, Director of the Electricity Infrastructure and Buildings (EI&B) Division, Pacific Northwest National Laboratory

Dr. Sawyer is responsible for shaping and managing a vision and strategy to assure that PNNL addresses DOE’s most important energy efficiency, clean energy and electricity infrastructure challenges.

Prior to joining PNNL, Karma served as the Program Manager for Emerging Technologies at DOE’s Building Technologies Office. In this role, she developed and executed multi-year R&D strategies across a range of building technologies. She also worked collaboratively with the national labs and external stakeholders to advance cross-cutting initiative, such as the Grid-interactive Efficient Buildings, Advanced Building Construction and Grid Modernization Initiatives. From 2010-2013, Karma served as an Assistant Program Director and Fellow at ARPA-E, focusing on carbon capture and thermal storage technologies.

Dr. Sawyer earned a Ph.D. in Chemistry from the University of California, Berkeley in 2008. She also holds a B.S. in Chemistry from Syracuse University.

Moderator:

Eric A. Schiff, Executive Director, SyracuseCoE

This presentation was part of the EPIC Buildings Program, created to accelerate innovations for energy hardware in NYS that enhance Grid-Interactive and Energy & Efficient Buildings (GEBs). Supported by the U.S. Department of Energy and organized in collaboration with CenterState CEO’s Clean Tech Center.

Sign up for project news and events

Energy & Equity mailing list

 

Verification

 

Winners Selected for the New York Tri-State Region EnergyTech University Prize Competition

15 university-based student teams from throughout the New York / Tri-State region competed  in the Regional EnergyTech University Prize business plan competition, sponsored by the U.S. Department of Energy’s (DOE’s) Office of Technology Transitions (OTT). The competition was hosted by SyracuseCoE, New York State Energy Research and Development Authority (NYSERDA) and CenterState CEO’s CleanTech Center on February 18th. The inaugural competition was designed to challenge post-secondary students to develop and present a business plan leveraging lab-developed and other high-potential energy technologies. Teams that successfully identify an energy technology, assess its market potential and propose a strategy are eligible to win a share of $250,000 in cash prizes. There are three phases to the event, the Explore Phase, the Refine Phase and finally, the Pitch Phase.

The “Smart i-Floor” proposal, submitted by a student team from University of Connecticut, was selected as the EnergyTech UP Regional Winner for the New York Tri-State area. The team was awarded $2,500 for their plan for durable integrated tiles that sense information and harvest energy from each footstep. The winning team will move on to compete in the next phase of the competition, the Refine Phase, held as part of Carnegie Mellon University’s Energy Week in mid-March, where they’ll refine their market analysis and business opportunity. 

Additionally, two student teams were selected as Technology Bonus Prize Semi-finalists:

  • Fossil Energy and Carbon Management: Pantheon, A Carbon-Negative Cement Replacement, The State University of New York at Binghamton
  • Solar: Tri-Sol: A 3-in-1 Solar Skylight System, University of New Haven

Technology Bonus Prize Semi-finalists from all eleven (11) regional Explore Events will compete for $2,000 prizes in each of the six (6) categories; winners will be invited to compete in the Refine and Pitch Phases alongside the Regional Winners. 

“Competitions like DOE’s EnergyTech UP give students a valuable opportunity to envision and communicate  the transformation of a technical energy innovation into a successful business,” said SyracuseCoE Executive Director, Eric A. Schiff. “SyracuseCoE was pleased to host the event.” 

Judges for the New York / Tri-State regional competition included Jackie Amable, managing director of Nextcorps’ Venture for ClimateTech; Andrew Graceffa, principal of the Energy & Sustainability division of SOCOTEC USA; and Jamie Newtown, head of Digitalization and Innovation at Ramboll Americas. Two teams from Syracuse University competed in the competition against teams from Columbia, University of Connecticut, Cornell, New Jersey Institute of Technology, Rutgers, SUNY Binghamton and SUNY Buffalo.  Over 80 people attended the virtual event. For more information about the competition including other regional events, visit the EnergyTech University Prize webpage. 

SyracuseCoE Accepting Applications for the 2022 Innovation Fund, Deadline February 17th

Proposals for up to $10,000 are invited from current and new SyracuseCoE Partner companies. The Innovation Fund is funded by member companies of the SyracuseCoE Partner Program to help Partners overcome barriers in the process of commercializing potentially transformative innovations. Apply here

Companies at all Partner levels — Industry, Affiliate and Start-Up — are invited to apply. Projects must address a challenge within SyracuseCoE’s core focus areas. We encourage projects that include research engagements with faculty and students, support for product development and testing, market analyses, proposal match requirement, and more.

Previous companies who were Innovation Fund winners include:

Visit the Innovation Fund Projects page to see how other Partners have used these funds.

Applications, due by Thursday, February 17th, 2021 at 5:00p ET, will be invited to give a proposal pitch, via Zoom, with a panel of judges. Visit the SyracuseCoE Innovation Fund webpage to learn more, or, if interested in joining the Partner Program, contact Tamara Rosanio at tlrosani@syr.edu.

SyracuseCoE Selected as EnergyTech University Prize Regional Convening Partner, in collaboration with NYSERDA and CenterState CEO’s Clean Tech Center

Register your team and submit your idea by the Jan. 31, 2022, deadline!

The U.S. Department of Energy’s (DOE’s) Office of Technology Transitions (OTT) recently launched the EnergyTech University Prize (EnergyTech UP), an engaging competition that challenges post-secondary students to develop and present a business plan that leverages lab-developed and other high-potential energy technologies. EnergyTech UP awards more than $250,000 in cash prizes to teams that successfully identify an energy technology, assess its market potential, and propose a strategy for commercialization.

The competition gives students the opportunity to learn, lead, and grow, offering cash prizes to winners based on the strength of their proposal, not the strength of their background.

Interested in competing?

  1. Explore possible technology opportunities on the Lab Partnering Service, read more about prizes and the official rules
  2. Register a team and/or submit an idea is Jan. 31, 2022.
  3. Compete on in the virtual regional competition, hosted by NYSERDA, SyracuseCoE and the CleanTech Center on February 18th from 3 to 5pm to qualify for the national competition. More information will be announced.
Register Your Team Now!

The OTT has named NYSERDA, in collaboration with SyracuseCoE and CenterStateCEO’s Clean Tech Center, as one of fifteen Regional Convener partners of the EnergyTech University Prize (EnergyTech UP). In this role, these organizations will host the competition’s Explore Event, virtually, on February 18th from 3:00 to 5:00pm for students in the surrounding geographic locations.

During the first phase of EnergyTech UP, students explore business and energy technology opportunities and present their findings at the regional Explore Event, virtually, on February 18th from 3:00 to 5:00pm. At the end of the event, judges will identify the top team selected to move on to the national competition in March.

In addition to winning cash prizes, students competing in EnergyTech UP will:

  • Receive tailored mentorship and Energy I-Corp materials
  • Develop business plans specifically for the energy industry
  • Work directly with the U.S. Department of Energy and national laboratories
  • Network with industry professionals at Carnegie Mellon University’s Energy Week.

This challenge is designed to be approachable, equitable, and scalable, allowing students with- or without a background in energy or business to successfully compete.

To hear more about EnergyTech Up, follow SyracuseCoE on social media (links below) and DOE / OTT on Twitter, LinkedIn and Facebook.

About the EnergyTech University Prize
Sponsored by the Office of Technology Transitions (OTT) at the U.S. Department of Energy (DOE), the EnergyTech University Prize (EnergyTech UP) is a collegiate competition challenging multidisciplinary student teams to develop and present a business plan that leverages DOE national 4 | EnergyTech University Prize Supported by the U.S. Department of Energy Office of Technology Transitions laboratory-developed and other high-potential energy technologies. EnergyTech UP awards cash prizes to teams that successfully identify an energy technology, assess its market potential, and propose a strategy for commercialization. Learn more.

 

A Tribute to Friend, Joanne Shenandoah

Shenandoah, performing at the SyracuseCoE Dedication event.

SyracuseCoE pays tribute to Syracuse native, friend and advocate, Joanne Lynn Shenandoah-Tekalihwakhwa.

Member of the Wolf Clan, Oneida Indian Nation, part of the Haudenosaunee (Iroquois Confederacy), human rights activist and Grammy-award winning singer, Joanne Shenandoah, passed away on November 22, at the age of 64.

The critically acclaimed singer and musician has had a strong relationship with Syracuse University, lending her talents on many occasions over the past two decades. Shenandoah performed in the fall of 2001 at the Maxwell’s Schools announcement of a new minor in Native American studies.

She contributed significantly to the dedication and open house of the Syracuse Center of Excellence headquarters building in 2010, by writing and performing a song, Your Legacy, in honor of the event and for SyracuseCoE and its collaborators. Shenandoah appeared on stage with her sister Diane and daughter Leah Shenandoah.

Syracuse University gave her an Honorary Doctorate of Music in 2002 for her service to others and embodiment of community spirit. Her connection to the university was strengthened, in part, by the school’s role in preserving local tribal heritage and dedication to recognizing the Indigenous People on whose ancestral lands Syracuse University now stands.

National Conference On Indigenous Knowledge, SyracuseCoE

In 2011, Shenandoah was an original board member of the Hiawatha Institute for Indigenous Knowledge, created in partnership with Syracuse University. The non-profit institute provides traditional knowledge through education on original people’s concepts of peace, sustainability and planetary survival. In 2012, she was the recipient of the Atlas Award for her work within the climate change movement.

 In addition to many other awards for her music and activism, Shenandoah received a Grammy Award in 2005 for Best Native American Music Album for her contributions to Sacred Ground: A Tribute to Mother Earth, a compilation. She has appeared at numerous prestigious events alongside transformational world leaders including, His Holiness the Dali Lama and Nelson Mandela. Her website’s “celebrity” page shares photos of the singer with American music royalty, including June and Johnny Cash, and a long list of acclaimed artists she has performed or recorded with.

Joanne Shenandoah will be remembered for her enchanting singing voice and for her voice as Ambassador of Peace, Advocate of the Earth and Educator of Indigenous Knowledge.

Funding Opportunity Announcement – 2022 Faculty Fellows

Research & Technology seed funding is available through the 2022 SyracuseCoE Faculty Fellows Program – Deadline extended to January 21st

Faculty from Syracuse University and SyracuseCoE Partner institutions – SUNY ESF and SUNY Oswego – are invited to submit proposals for innovative research and development efforts in clean and renewable energy, energy-efficiency & healthy buildings and water resources. This funding is intended to catalyze externally-sponsored projects and to contribute to economic and workforce development of New York State businesses. 

Up to $15,000 per award is available for projects without industry collaboration. Up to $25,000 per award is available for projects that engage a New York State company seeking technology, intellectual property, or technoeconomic expertise. SyracuseCoE intends to make multiple awards under the announcement. Awards will total approximately $100,000 in this round. Funding is expected to be available starting in February 2022. 

Proposals should address how the use of the Faculty Fellow seed funding could lead to a significant “next step” in research and technology development, strengthen New York industry engagement and help establish SyracuseCoE and its Partner institutions as thought leaders in the targeted area. 

The 2022 Faculty Fellows Program is open to faculty members who hold full-time appointments at SyracuseCoE Academic Partner institutions: Syracuse University, SUNY-ESF, and SUNY Oswego. Tenured, tenure-track, and non-tenure-track faculty are eligible. SyracuseCoE welcomes proposals that engage multiple faculty members, including cross-campus teams from multiple departments, colleges, and/or institutions. Teams are encouraged, but not required, to include non-university participants. However, funds may be disbursed only to academic institutions.  

The deadline for proposals is 11:59 pm, January 21, 2022. Read the full announcement and how to submit your proposal on the SyracuseCoE Faculty Fellows webpage. 

GEB 101: Concepts, Applications and Challenges

SLIDES PODCAST Transcript Coming Soon


Sign up for project news and events

Energy & Equity mailing list

 

Verification

The Basics of of Grid-Interactive Efficient Buildings (GEBs)
A SyracuseCoE Research & Technology Forum, November 30, 2021

In the U.S., more than 70% of electricity consumption comes from buildings. As the world’s population continues to urbanize, building energy demand will place an increasingly hefty burden on electric power transmission and distribution networks. In addition, the intermittent and unpredictable nature of renewable energy sources such as photovoltaic (PV) and wind energy, lead to mismatches in energy supply and demand, resulting in energy price volatility and unstable profiles in building loads and network voltages.

GEB = Grid-Interactive Efficient Buildings
Learn more about GEB

To address these challenges, the Department of Energy’s Building Technology Office is developing a Grid-Interactive Efficient Building (GEB) strategy which aims to optimize across distributed energy resources (DERs) to advance the role buildings can play in energy system operations and planning.

Join to learn the basic concepts, potential applications, and current challenges of GEB. The presentation will be followed by Q&A.

This event is part of SyracuseCoE’s EPIC Buildings program.

Presenters:

Bing Dong, Associate Professor, Mechanical & Aerospace Engineering, Syracuse University

Dr. Bing Dong is an Associate Professor in the Mechanical and Aerospace Engineering Department at Syracuse University. He also serves as Associate Director of the Syracuse Center of Excellence for Environmental and Energy Systems. His research interests include building energy efficiency, occupant behavior modeling at both building and urban scales, buildings-to-grid integration, building controls and diagnostics, and big data analytics. Dr. Dong was Subtask A leader for IEA EBC Annex 66, “Definition and Simulation of Occupant Behavior in Buildings”, and currently serves as Subtask 2 leader for IEA EBC Annex 79, “Occupant-Centric Building Design and Operation”, an interdisciplinary, international research collaborative effort involving more than 100 researchers from 16 countries. He has led 22 research projects that lead to research awards totaling over $10 million funded by NSF, Department of Energy, ARPA-E, NYSERDA, and other industry partners. He has over 100 journal and conference papers published and received the 2018 IBPSA-USA Emerging Contributor Award and the 2019 NSF CAREER Award. He is Associate Editor of the International Journal of Building Simulation and serves as research committee chair for ASHRAE’s Occupant Behavior Working Group, and serves on the Board of Directors of the International Association of Building Physics (2021-2024). Dr. Dong received his Ph.D. from Carnegie Mellon University.

David Lovelady, Director of Distributed System Operations, National Grid

Mr. Lovelady has over 15 years’ experience in the energy industry starting with hands on experience as a maintenance technician through to transmission and distribution system consulting, teaching, management and now as a Director of Distributed System Operations at National Grid.

Lovelady formerly served as a Principal Engineer at National Grid, driving the technical and economic implementation of NY REV policies and National Grids strategic vision into distribution system planning. He is currently focused on microgrids, distribution automation, DERMS and DSP business strategy.

Prior to joining National Grid Mr Lovelady held several roles at Siemens PTI, the most recent as manager of the Power Academy training business, responsible for driving aggressive growth strategies, development of new training courses and services and the management of a team consisting of engineering instructors, sales, marketing, course coordinator and administration staff.

Moderator:

Eric A. Schiff, Executive Director, SyracuseCoE and Professor of Physics, Syracuse University

As SyracuseCoE director since 2020, Eric Schiff has been working on ways to reduce transmission of COVID-19 in the community. He has many years of experience as a physics professor, a semiconductor and solar cell researcher, a university and government administrator, and an industry consultant. He is a Fellow of the American Physical Society.

 

Forum: EPIC Buildings: Exploring New Funding Opportunities for Small Businesses from the U.S. Department of Energy

WEBINAR RECORDING PRESENTATION SLIDES

The U.S. Department of Energy (DOE) issued its Round 2 SBIR/STTR Phase 1 Topics of Interest notice on Monday, Nov 8th, with letters of intent due on Jan 3rd. These programs provide research & development funding for small businesses to support technological innovation through the investment of federal research funds in critical American priorities to build a strong national economy.

This webinar, held on Friday, Nov 12th explored the topics of interest targeted by the DOE in this funding opportunity. Learn about the application process and hear from those who have navigated the process successfully, winning Phase I awards of $50,000 – $250,000 and follow-on Phase II awards of $1,600,000.

SBIR = Small Business Innovation Research
STTR = Small Business Technology Transfer

Learn more about SBIR and STTR

What is the opportunity?

The SBIR and STTR programs are competitive programs designed to encourage domestic small businesses to engage in research/research and development (R/R&D) with the potential for commercialization. These initiatives enable small companies (500 or fewer employees) to explore their technological potential and grow their commercialization success. In FY 2020, participating federal agencies awarded small businesses over $3 billion to develop and commercialize new technologies.

What is the EPIC Buildings program?

SyracuseCoE’s EPIC Buildings program was created to accelerate development and commercialization of innovations for energy hardware innovations in the upstate New York region that enhance Grid-Interactive & Energy-Efficient Buildings (GEBs).

Podcast: EPIC Buildings – Project Kickoff Webinar

PODCAST TRANSCRIPT
Sign up for project news and events

Energy & Equity mailing list

 

Verification

Buildings account for more than 70% of U.S. electricity consumption and power sector CO2 emissions. By combining energy efficiency and demand flexibility, grid-interactive efficient buildings (GEBs) can remake buildings into a clean and flexible resource, saving billions in power system costs, reducing carbon emissions and relieving stress on the nation’s grid. According to the U.S. Department of Energy, Grid-interactive Efficient Buildings (GEB) work to remake buildings into a clean and flexible energy resource by combining energy efficiency and demand flexibility with smart technologies and communications to deliver affordable, comfortable, productive, and high performing homes and buildings.

SyracuseCoE held a kickoff webinar showcasing the new EPIC Buildings program based on a $750,000 award from the U.S. Department of Energy to accelerate development and commercialization of innovations for energy hardware innovations, in the upstate New York region, designed to enhance ‘Grid-Interactive’ & Energy-Efficient Buildings.

The panel included Monica Neukomm, Technology Manager for Grid-Interactive Efficient Buildings (GEB) in the Energy Department’s Building Technologies Office (BTO), as well as by Ed Bogucz, Bess Krietemeyer, Bing Dong from Syracuse University, and Sarah Hood and Juhanna Rogers from CenterState CEO and Joseph Borowiec from NYSERDA.

For more information about this program, visit the EPIC Buildings Project webpage or contact Tammy Rosanio at tlrosani@syr.edu.

$750,000 DOE Award to Accelerate Innovations for ‘Grid-Interactive’ Efficient Buildings

Syracuse University has received a $750,000 award from the U.S. Department of Energy (DOE) to accelerate development and commercialization of innovations for ‘Grid-Interactive’ & Energy-Efficient Buildings. The project is focused on strengthening the regional innovation cluster in Upstate New York, including resources available through the Syracuse Center of Excellence in Environmental and Energy Systems (SyracuseCoE) and CenterState CEO. This is one of ten awards made by DOE’s Energy Program for Innovation Clusters (EPIC) and is the only EPIC project focused on building technologies. 

Visit the EPIC Buildings webpage on the SyracuseCoE website.

As the COVID-19 pandemic has demonstrated anew, indoor spaces are crucial to the health, comfort and productivity of occupants. At the same time, building operations are responsible for nearly half of the energy used in the US. The DOE’s Building Technology Office envisions that a clean-energy future requires innovations for “grid-interactive buildings & energy-efficient” (GEBs) that integrate energy generation or storage capabilities and management systems that interact with the regional electrical grid. 

Participating companies will receive assistance to develop and commercialize energy hardware innovations for buildings, including heating, ventilation and air conditioning systems, building envelope systems, building-integrated energy generation and harvesting technologies, and building-integrated battery and thermal energy storage systems. Beyond the innovation cluster, the goals of the project are to promote equity & public health in this sector and further the nation’s transition to net-zero carbon emissions. 

“This award gives us the opportunity to strengthen and grow the regional cluster of businesses that are developing building technology innovations and products,” said Eric Schiff, interim executive director of SyracuseCoE. “This project supports SyracuseCoE’s mission to catalyze these innovations in New York State.” 

The project will sponsor a series of events and resources for networking, technical, marketing and equity issues, as well as provide access to funding opportunities and national lab resources. Startup companies can join the Clean Tech Center in Syracuse which offers a suite of services with additional financial support from NYSERDA. All companies can propose collaborative projects involving intellectual property, prototypes, and proof-of-concept for their potential products for buildings.

“The ‘smart’ and high-performance building technologies regional innovation cluster is critical to Central New York’s economy. We are excited to partner with the SyracuseCoE on this project as it will leverage and build on that existing regional expertise, and strengthen strategies to improve public health, particularly in disadvantaged communities, ” said Rob Simpson, president of CenterState CEO. “Ensuring that we can help companies and innovators advance these systems to drive more equitable health outcomes is central to our vision of creating a place where business thrives and all people prosper.”

KICKOFF EVENT  A kickoff webinar will be held on Tuesday, October 19th at 4 p.m. The event will give a brief introduction to the program, including the opportunities available for CNY companies. Event panelists will discuss the needs and opportunities for energy hardware innovations for “smart buildings,” including products that promote equity and health in addition to grid interactivity and energy efficiency. Monica Neukomm, Technology Manager for Grid-Interactive Efficient Buildings (GEB), with the DOE’s Building Technologies Office (BTO) will join the panel. The event will also be joined by Eric Schiff, Ed Bogucz, Bing Dong, and Bess Krietemeyer from Syracuse University, and Sarah Hood and Juhanna Rogers from CenterState CEO, and Joseph Borowiec from NYSERDA. 

For more information about the program, contact Tammy Rosanio at tlrosani@syr.edu.

Podcast: COVID Safety in Schools: A New Variant for a New Year

PODCAST TRANSCRIPT

Widespread school closings, like we’ve seen through the COVID-19 pandemic, create long-term individual and societal costs. It is in the best interest of children and families for schools to remain open. To do that, every effort must be made to keep children healthy.

In the last year, we have learned a great deal about preventing COVID-19 transmission with in-person instruction. The delta variant now challenges us to make use of every layer of prevention. The good news is that children are at a lower risk than adults and there is a new body of evidence that shows that kids can be kept safe at school with a holistic, multi-layered plan to reduce exposure, limit transmission and respond to outbreaks.

This fall, how can schools prioritize risk reduction measures for COVID-19?

We spoke with Harvard researcher and exposure science expert Joseph Allen and East Syracuse Minoa School Superintendent Donna DeSiato to describe the most valuable strategies and how they can be effectively implemented in schools, even with limited budgets and staff.

Read Dr. Allen’s guest essay in the New York Times, The Hard Covid-19 Questions We’re Not Asking.

Speakers:
Dr. Joseph G. Allen, Associate Professor of Exposure Assessment Science, Harvard T.H. Chan School of Public Health and co-author of Healthy Buildings
Dr. Allen is an associate professor at the Harvard T.H. Chan School of Public Health and co-author of Healthy Buildings: How Indoor Spaces Drive Performance and Productivity, with John Macomber at Harvard Business School. He began his career conducting forensic health investigations of sick buildings in several hundred buildings across a diverse range of industries, including healthcare, biotechnology, education, commercial office real estate and manufacturing. At Harvard, Dr. Allen directs the Healthy Buildings Program where he led the creation of ‘The 9 Foundations of a Healthy Building’. To drive research into practice, he works with Fortune 100 companies on implementing Healthy Building strategies in their global portfolios. He earned his Doctor of Science (DSc) and Master of Public Health (MPH) degrees from the Boston University School of Public Health, and a Bachelor of Science (BS) degree in Biology from Boston College.

Dr. Donna J. DeSiato, Superintendent, East Syracuse Minoa Central School District
Dr. Donna DeSiato, a respected leader in the field of public education, proudly serves as superintendent of the East Syracuse Minoa Central School District since 2005. She has previously served as the Assistant Superintendent for Curriculum and Instructional Services, Director of Elementary Education, principal, vice principal, instructional specialist and teacher in the Syracuse City School District. Dr. DeSiato’s professional experiences include building, district and state level leadership in building collaborative partnerships, strategic planning and leading systemic transformation in learning. ESM is recognized for developing a broad array of career pathways including innovative STEM learning models in partnership with business and higher education with Siemens, King & King Architects, SUNY ESF, LeMoyne College, Syracuse University and Onondaga Community College, along with the study of the development of pharmaceutical drugs through RχeSearch: An Educational Journey supported by Bristol Myers Squibb. Most recently in 2018-19, ESM launched the first Aviation Career Pathway High School Courses in New York State and the ESM Spartan Academy as one of 19 Early College High Schools in New York State. In 2013 the District was awarded the “Be the Change for Kids Innovation Award” by the Nanoscale College of Science and Engineering and New York State School Board Association and in 2015 ESM was recognized nationally at the White House as one of the first STEM Learning Ecosystems. Dr. DeSiato is a Trustee at Onondaga Community College, President of the Syracuse University Study Council and serves on the Executive Committee of the New York State Council of School Superintendents and the Syracuse Regional Airport Authority. Dr. DeSiato was awarded the 2015 Margaret Ashida STEM Leadership Award by the New York State STEM Education Collaborative, the STEM Woman of the Year Award by the CNY STEM Hub in 2016 and the STEM Outreach Individual of the Year 2020 Award by TACNY. She is highly regarded in education and in the business community for her leadership in innovative learning models and preparing graduates for our global society.
Moderator:
Dr. Eric A. Schiff, Interim Executive Director, SyracuseCoE and Professor of Physics, Syracuse University
As SyracuseCoE director for the last year, Eric Schiff has been working on ways to reduce transmission of COVID-19 in the community. He has many years of experience as a physics professor, a semiconductor and solar cell researcher, a university and government administrator, and an industry consultant. He is a Fellow of the American Physical Society.

2021 Innovation Showcase & BBQ

SyracuseCoE warmly welcomed back friends and collaborators as we celebrated the many accomplishments of student-supported projects at the 2021 SyracuseCoE Innovation Showcase and Summer BBQ. Exhibits and posters were displayed featuring innovative projects, ideas and research, including:

  • Student summer internship projects
  • Student researchers working with SyracuseCoE Faculty Fellows and in SyracuseCoE Labs
  • Syracuse University Industrial Assessment Center Projects
  • Signature research projects led by faculty

2021 Innovation Showcase Posters

Tech to Market: The Wells Fargo Innovation Incubator (IN2) welcomes SyracuseCoE as a Channel Partner

The Wells Fargo Innovation Incubator (IN2) co-administered by the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) has welcomed Syracuse University and SyracuseCoE as a Channel Partner. IN2 is a $50 million technology incubator and platform funded by the Wells Fargo Foundation. Housed at NREL in Golden, Colorado, IN2’s mission is to speed the path to market for early-stage, clean-technology entrepreneurs. Launched in 2014 with an initial focus on supporting scalable solutions to reduce the energy impact of commercial buildings, IN2 has since expanded its focus to advance technologies that address the sustainable production of agriculture and housing affordability. IN2 supports clean energy startups and agriculture companies by providing funding for projects of up to $250,000, including technical assistance that leverages the capabilities, facilities, equipment and deep expertise that exists at NREL, as well as at the Donald Danforth Plant Science Center (Danforth Center).

“Relationships with DOE national labs are critical to growing the clean tech innovation cluster in New York State,” said SyracuseCoE director Eric Schiff, “and we are thrilled to become an IN2 Channel Partner. In addition to providing much-needed support for project funding, startups that are invited to join an IN2 cohort are paired with experts from NREL or the Danforth Center who can help them address critical milestones on their paths to commercialization.”

SyracuseCoE is one of only two New York State-based cleantech partners to join the nation-wide network of Channel Partners, which includes more than 60 colleges and universities, business incubators and accelerators, and their affiliated clean technology programs. To date, 56 portfolio companies have each received up to $250,000 in technical and project assistance from the program. For every IN2 program dollar awarded, on average, IN2 companies raise more than $95 dollars in external follow-on funding. IN2 portfolio companies have gone on to raise $1.1 billion from external follow-on funding, creating 774 jobs.

An invitation-only program, IN2 relies on Channel Partners like SyracuseCoE to refer promising companies to the program for consideration in a competitive application and down selection process prior to being invited to join the next cohort. Cohort 10, a Cleantech Demonstration Cohort, will be launched within the next few months. For more information about IN2  and the application process, please contact Tammy Rosanio at SyracuseCoE, tlrosani@syr.edu.

How Should We Set Pandemic Capacity Limits for Restaurants & Bars?

Author Eric A. Schiff

DOWNLOAD THE FULL BRIEF [PDF]

View SyracuseCoE’s other research briefs

Summary:

Restaurants and bars are places where airborne diseases like COVID-19 are easily transmitted from one patron to another. Data show that restaurants and bars add significantly to new infections in a community. When a community’s rate of new infections rises too high, health authorities around the country are reducing the capacity limits of bars and restaurants. However, the connection between the capacity limits and the community infection rate has not been quantified and can appear arbitrary. 

In recent research, we proposed capacity limits based on calculations using the community’s rate of new infections. We use the county risk categories developed by a collaboration with The New York Times, the Johns Hopkins University Bloomberg School of Health, and Resolve to Save Lives, an initiative of Vital Strategies. The principle is that COVID-19 infections from restaurants and bars should be kept to the rate when the risk category is relatively low. As shown in the graphic below, in one scenario officials would act when the county moves from the medium to the high-risk category. A 50% capacity limit will then keep the infection rate down to the numbers when the risk level was medium. If the very-high-risk category is reached, restaurants would be limited to 25% capacity. The number of new infections is then again reduced to the rate at the medium risk level. To learn more about other scenarios that health officials could use, including the consideration of indoor ventilation systems, the calculations used in these determinations, and further recommendations, read the full article here.

About the Author

Eric A. Schiff, Ph.D., is interim director of SyracuseCoE (Syracuse Center of Excellence in Environmental and Energy Systems) and Professor in the Department of Physics at Syracuse University. email: easchiff@syr.edu .

Podcast: Reopening Restaurants: How safe is it to dine-in again?

A SyracuseCoE Research & Technology Forum and Panel Discussion

PODCAST TRANSCRIPT

What should restaurant-goers take into consideration before reserving that table?
What can restaurateurs do to make indoor dining safer?  

Approximately one year ago, the coronavirus pandemic shut down some of our favorite places to go – bars and restaurants. Frustrated and desperate, restaurateurs have been agile by innovatively reworking their business models, where possible, just to stay open. Take-out, outdoor dining and ghost kitchens helped keep restaurants afloat, but most state and local guidance does not allow 100% occupancy yet.

There is light at the end of the tunnel. With vaccines rolling out and community transmission rates slowly descending, many are anxiously pondering – how safe is it to go out to eat now? 

Listen to a round table discussion with three experts: a buildings expert, a restaurateur and a public health expert who bring perspective and clarity to this complex question. The conversation highlights the factors that contribute to a safer restaurant reopening and dining out experience. Audience members ask the expert panel intriguing questions during the Q&A session. 

Charles Bertuch, P.E., Principal, Bergmann Architects, Engineers and Planners
Bertuch has more than 30 years of professional experience as a consultant and plant engineer. He is currently Principal – Energy Solutions for Bergmann Associates in Syracuse, NY. He holds an M.S degree in Mechanical Engineering from Syracuse University. Visit Bergmann’s website.

Caitlin Gambee, Co-Owner, The Brewster Inn, Cazenovia, NY
Gambee focuses on many of the important non-culinary aspects of running an award-winning restaurant and inn. She does the day-to-day bookkeeping as well as managing front desk / concierge staff, overseeing the hotel, managing the marina and all of the consumer-facing communications including website, social media, email blasts, etc. Her background is in marketing and events and she previously ran public relations and community relations campaigns for clients including the Boston Celtics, Dunkin’ Donuts and Converse. Visit The Brewster’s website.

Lisa Letteney, P.E., Director, Division of Environmental Health, Onondaga County Health Department, Syracuse, NY
Letteney is currently the Director of Environmental Health for the Onondaga County Health Department and has been with the department for over 33 years. She holds an M.S. degree in Chemical Engineering and is a NYS licensed P.E. (Professional Engineer). In her Director’s position, she oversees the following programs: Food Protection (Restaurant Inspections), Temporary Residences and Recreational Facilities (Hotel/Motels, swimming pools, beaches, camps), Environmental Lead, Public Water Supply, Septic Systems, Mosquito Control, Rabies, and Tanning. Visit Onondaga County Health Department’s website.

Eric A. Schiff, Ph.D., Interim Executive Director, SyracuseCoE and Professor of Physics, Syracuse University

As SyracuseCoE director for the last year, Eric Schiff has been working on ways to reduce transmission of COVID-19 in the community. He has many years of experience as a physics professor, a semiconductor and solar cell researcher, a university and government administrator, and an industry consultant. He is a Fellow of the American Physical Society. Visit Schiff’s SyracuseCoE Leadership webpage.

Trends from Wastewater Testing: Pharmaceutical and Illicit Drug Use are Higher in Places where COVID-19 is More Prevalent

Reported by Kerrie Marshall, Arik Palileo, Eric A. Schiff, and Teng Zeng

DOWNLOAD THE BRIEF [PDF]

View SyracuseCoE’s other research briefs

Summary:

Wastewater testing is increasingly used worldwide to monitor trends in pharmaceutical and illicit drug use. Between April and July of 2020, wastewater samples from six sewer systems in Onondaga County, NY were tested to assess pharmaceutical and illicit drug use patterns during the COVID-19 pandemic. The study found that samples from sewersheds showing greater pharmaceutical and illicit drug use also contained more SARS-CoV-2 RNA – the genetic material found in the coronavirus. Testing identified higher levels of 26 pharmaceuticals, including medications for depression, epilepsy, allergies, and high blood pressure, as well as illicit drugs like opioids, cocaine, and amphetamines. For example, Figure 1 illustrates greater blood pressure medication consumption (left panel) and greater opioid consumption (right panel) in locations with wastewater samples containing coronavirus RNA. For all six substance groups (antidepressants, antiepileptics, antihistamines, antihypertensives, synthetic opioids, and central nervous system stimulants), the sewersheds with the lowest consumption rates had an average COVID-19 positivity rate of 1.5% – 2.5%, while the sewershed with highest consumption rates had a COVID-19 positively rate of 4%. This study demonstrates the need to establish regional and national wastewater testing initiatives to monitor COVID-19 spread and its implications for prescription and illicit drug use.

References:

High-throughput wastewater analysis for substance use assessment in central New York during the COVID-19 pandemic, 2020.

About the Authors

Kerrie Marshall (klmarsha@syr.edu) is the Assistant Director of Communications at SyracuseCoE, the SU Center of Excellence in Environmental & Energy Systems. Arik Palileo (apalileo@syr.edu) is a SyracuseCoE Communications Intern. Eric Schiff (easchiff@syr.edu) is the Interim Executive Director of SyracuseCoE. Teng Zeng (tezeng@syr.edu) is Assistant Professor of Civil and Environmental Engineering at SU, a SyracuseCoE Faculty Fellow and the lead author on this study.

SyracuseCoE Innovation Fund Awards $40,000 to Companies for COVID Related Commercialization

SyracuseCoE has awarded $40,000 to four partner companies through the second round of the 2020 Innovation Fund. For this round, partners were invited to submit proposals in SyracuseCoE core focus areas that directly address the COVID-19 pandemic. The goal is to leverage the region’s great capabilities in indoor air quality to reduce disease transmission in the built environment. The Innovation Fund is funded by member companies of the SyracuseCoE Partner Program and aims to help companies advance product development and technological innovation.

See previously awarded Innovation Fund projects.

The winning projects are:

  • Acumen Detection Inc., to provide an rt-PCR machine, positive controls and other reagents, and advice, guidance and support to SyracuseCoE researchers developing a test for COVID-19 in room air. This will allow schools, offices and other gathering places to detect if someone with COVID-19 has entered the space. Acumen Detection is a startup partner, co-located at the SyracuseCoE research facility, that is transforming the way dairy producers across the globe monitor the environment and health of their herds by providing pathogen detection at the point of need–on the farm. Acumen Detection joined the SyracuseCoE Partner Program in 2019 soon after its spin-off from SRC Inc.
  • Air Innovations Inc., is enhancing their HEPAirX ventilating air purifier and HVAC unit to reduce disease transmission with negative pressure settings and UV-C light. After conducting the redesign, marketing materials will be created to address the needs of the dental market. Air Innovations is an affiliate partner that designs, tests and manufactures environmental control systems for original equipment manufacturers (OEMs), custom HVAC projects and unique environments. They specialize in achieving consistent results in temperature control (low temperature and precision temp control), humidity control (desiccant to near saturation) and air filtration (HEPA to molecular).
  • Elizion Tech will develop medical grade, bio-based thermoplastic elastomers (TPEs) for the manufacture of sustainable, biodegradable and recyclable filtration materials. Several sources will be assessed for their feasibility of processing into a source component for subsequent manufacturing of the antipathogenic filtration technology. Such materials can be useful in the production of personal protective equipment (PPE). Elizion Tech, based in Ontario, Canada, is developing an antipathogenic nanocoating, PPE, air filtration systems, high-contact surfaces and other applications.
  • M3 Innovation, LLC, co-located at the SyracuseCoE research facility, is developing a revolutionary platform for sports venues that will both provide efficient high quality lighting and also use ultraviolet lighting to sterilize the facilities from bacteria and viruses (specifically COVID-19). M3 Innovation is a startup partner comprised of founders and former engineers from Ephesus Lighting Inc., focused on developing lighting technology for the LED sports lighting market.

“There is an established history of innovative research and commercialization in environmental and energy systems in the Central New York region,” says Eric Schiff, interim executive director of SyracuseCoE. “Many SyracuseCoE partner companies, like Ephesus Lighting, Air Innovations, NuClimate, SparkCharge and others, have used their Innovation Fund awards on their path to successful commercialization. We hope this award will give companies the potential to play a critical role in helping communities reopen and function safely as we continue to recover from the COVID-19 pandemic.”

With these awards, SyracuseCoE has helped finance more than 49 projects by 30 companies, totaling over $527,000.

Proposals for the 2021 round of funding are due Thursday, March 11th. Become a member today! To learn more or apply, visit the webpage or contact Tammy Rosanio at tlrosani@syr.edu.

Semi-Open Partitions: A Defense Strategy for Airborne Disease

Reported by Kerrie Marshall, Arik Palileo and Eric A. Schiff

Download the PDF

This brief was updated on February 19, 2021.

Key Findings

  • Semi-open partitions can reduce airborne disease transmission when combined with a proper ventilation flow pattern in the room.
  • With ordinary “mixing ventilation”, well-designed, semi-open partitioned space can reduce the infection risk by 2 to 3 times.
  • With advanced ”displacement ventilation”, semi-open partitioned space reduce the risk by at least 4 times, and more with optimized designs.

The novel Coronavirus (SARS CoV-2), which causes the respiratory illness COVID-19, is readily transmitted from infected people who have no signs of infection. Airborne virus-containing particles exhaled from individuals speaking, breathing, or coughing are considered a significant source of spread for COVID-19. There are several well-known measures that reduce risk: masks for all individuals, increased ventilation through the central system or windows, and portable air purifiers.

This brief summarizes two more measures that work by modifying how air flows within a room. These have been studied by Meng Kong and Jianshun “Jensen” Zhang, who are Syracuse University faculty affiliated with SyracuseCoE. They distinguish between common “mixing” ventilation systems and less common “displacement” ventilation systems. The latter are superior at reducing transmission of disease from an infected person to other occupants of a room. Semi-open partitions can be installed in existing offices and classrooms that also reduce disease transmission when combined with a proper ventilation flow pattern in the room. An important virtue of the partitions is that they are a passive disease control measure, and don’t increase the operating cost of a building.

Mixing Ventilation

Most indoor spaces are fitted with mixing ventilation. This system uses vents, typically located near ceiling level, to pump clean, conditioned air into the room at high velocity. The clean air mixes with existing air in the room near the ceiling, called the mixing zone, before reaching an individual’s area. The airflow is illustrated in panel (a) of the figure. When an infected person is exhaling virus particles, they are spread fairly uniformly through the room, as illustrated in panel (b).

Partitions can reduce the lateral spread of virus between sections. They can be made inexpensively from clear plastic panels. Virus particles tend to rise until reaching a mixing zone above the partitions, as seen in panel (c). Kong & Zhang calculate that these partitions can reduce the risk of infection by 2 to 3 times below the baseline risk. The precise risk reduction factor depends on the location of the air supply and the exhaust in relation to an individual’s workspace.

Displacement Ventilation

The second, less common ventilation system is displacement ventilation. In displacement ventilation, vents in the floor slowly bring cool, conditioned clean air into the room that blankets the room floor. This is illustrated in panel (d). As the air is heated by a person’s body, it becomes a thermal plume that rises towards the ceiling along with exhaled virus. The effect is illustrated in panel (e). A return vent in the ceiling then removes air from the room before it mixes with air at lower levels.

Displacement ventilation on its own can substantially reduce the spread of exhaled virus in workspaces adjoining that of an infected person, as is illustrated in Panel (e). Describing ongoing research, Jensen Zhang says the reduction may be as large as tenfold for optimized displacement ventilation designs. In conjunction with semi-open partitions, the risk reduction may reach 20  times, as illustrated in panel (f).

References

Jensen Zhang (2020). “Integrating IAQ control strategies to reduce the risk of asymptomatic SARS CoV-2 infections in classrooms and open-plan offices”, Science and Technology for the Built Environment, 26:8, 1013-1018, DOI: 10.1080/23744731.2020.1794499

Meng Kong (2017). “Semi-Open Space and Micro-Environmental Control for Improving Thermal Comfort, Indoor Air Quality, and Building Energy Efficiency”, Dissertations – ALL. 810.
https://surface.syr.edu/etd/810

Call for Abstracts for IBPC 2021

The Technical University of Denmark (DTU) has announced a call for abstracts for IBPC 2021, the 8th International Building Physics Conference. The International Building Physics Conference (IBPC) takes place every 3 years and is the conference of the International Association of Building Physics (IABP). The event will be held on the DTU campus in Copenhagen, Denmark from August 25- 27, 2021. IBPC 2021 is organized by DTU in cooperation with Aalborg University, Aarhus University, University of Southern Denmark and Lund University

Download the flyer

The previous conference, IBPC2018 was held in Syracuse, NY and jointly organized by Syracuse University’s Center of Excellence in Environmental and Energy Systems, College of Engineering and Computer Science and School of Architecture.

Researchers within building physics are invited to submit abstracts for IBPC 2021 by November 30, 2020, within the following three thematic groups:

  • Physics – heat, air moisture, light/daylight, building acoustics
  • Objects – materials, building envelope, whole buildings, indoor/outdoor environment
  • Sustainability – energy efficiency, durability, circular construction, climate

To learn more about the conference venue, submissions, registration and organizing committee, visit ibpc2021.org.

Read Building physics today and future challenges: learning from IBPC2018

Ventilation & Masks: Reducing Airborne Transmission of COVID-19 in a Classroom


Author Eric A. Schiff

Download the Full Article

Key Findings

  • In a classroom setting with low ventilation and unmasked students, a superspreader’s COVID-19 infection will spread to essentially the entire class.
  • Neither good ventilation nor good masking, acting alone, reduces the percentage of students infected below 10%
  • Used in conjunction, good ventilation and masking reduced the calculated infection percentage to 2%.

Bar chart showing calculations for the likely percentage of a class that will be infected after 4 hours with a COVID-19 superspreader. Three levels of masking are shown. Low ventilation is one clean air change per hour, which applies in some schools. Good ventilation is 6 air changes per hour.

Summary

We’ve calculated the number of COVID-19 infections that will be spread from a single COVID-19 “superspreader” to students and teachers in a classroom shared for 4 hours. Without masking and with a low ventilation rate, nearly all susceptible students and teachers will be infected. Neither masking nor ventilation alone is sufficient to reduce the infection rate below 10%. Careful use of surgical masks along with good ventilation reduced the estimated infection rate to 2%. The bar chart below presents the estimated infection rates for low and for good ventilation, and for unmasked, cloth masked, and surgically masked students and teachers. The estimates are based on a comparison with the Guangzhou restaurant cluster of COVID-19 infections, and use the “Wells-Riley” model to calculate infection rates.

Acknowledgments

The author thanks Jensen Zhang (Syracuse University) for a critical reading of the manuscript. The information, data, or work presented herein was funded in part by an award from the New York State Department of Economic Development (DED) to the Center of Excellence in Environmental & Energy Systems (SyracuseCoE) at Syracuse University. Any opinions, findings, conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the DED.

About the Author

Eric A. Schiff, Ph.D., is interim director of SyracuseCoE (Syracuse Center of Excellence in Environmental and Energy Systems) and Professor in the Department of Physics at Syracuse University. email: easchiff@syr.edu .

References

1 Yuguo Li, et al., “Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant”, medRxiv preprint https://doi.org/10.1101/2020.04.16.20067728.

2 Jensen Zhang, “Integrating IAQ control strategies to reduce the risk of asymptomatic SARS CoV-2 infections in classrooms and open plan offices”, Science and Technology for the Built Environment 26, 1013-1018 (2020), DOI: 10.1080/23744731.2020.1794499. The effective ventilation rate Q is the product of the actual air flow and a factor that allows for imperfect removal or denaturing of virions in recirculated air.

3 J. Ma, et al., “Exhaled breath is a significant source of SARS-CoV-2 emission”, medRxiv preprint https://doi.org/10.1101/2020.05.31.20115154.

4 The air changes per hour (ach) is calculated as 60 x Q/V, where the units of Q are cubic feet per minute and V is the room’s volume (in cubic feet).

5 The original Wells-Riley form assumes a time-independent density of airborne virus; we have generalized the calculation to include the initial increase of the virion density following the arrival of the superspreader in the room. The use of a relative exposure presumes that classroom occupants and the diners in Guangzhou have similar inhalation rates and other factors of disease susceptibility. The Wells-Riley concept of a “quantum” for airborne transmission of disease is commonly assumed in studies of ventilation effects on infections, but other forms have been studied. See G. N. Sze To, C. Y. H. Chao, “Review and comparison between the Wells–Riley and dose-response approaches to risk assessment of infectious respiratory diseases”, Indoor Air 20, 2–16 (2010). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7202094/#b51 ; doi: 10.1111/j.1600-0668.2009.00621.x

6 W. R. Chan, et al., “Ventilation rates in California classrooms: Why many recent HVAC retrofits are not delivering sufficient ventilation”, Building and Environment 167, 106426 (2020). https://doi.org/10.1016/j.buildenv.2019.106426

7 A. Mueller and L. Fernandez, “Assessment of Fabric Masks as Alternatives to Standard Surgical Masks in Terms of Particle Filtration Efficiency”, medRxiv preprint doi: https://doi.org/10.1101/2020.04.17.20069567.

8 M. Klompas, M. A. Baker, C. Rhee, “Airborne Transmission of SARS-CoV-2: Theoretical Considerations and Available Evidence”, JAMA 324(5): 441-442. doi:10.1001/jama.2020.12458.

SyracuseCoE Invites Innovation Fund Proposals that Address the COVID-19 Pandemic

Proposals for up to $10,000 are invited from current SyracuseCoE Partner companies for round 2 of the 2020 Innovation Fund. The Innovation Fund is funded by SyracuseCoE’s Partner Program to help Partners overcome barriers in the process of commercializing potentially transformative innovations.   

The COVID-19 public health emergency has had an unprecedented impact on our nation’s economic health and well-being. Companies throughout New York State are contributing to solutions addressing these challenges, from developing new applications for existing products to complete transformation of manufacturing operations to produce items most needed by frontline workers. To support these efforts, proposals are restricted for this round to innovations that specifically target the COVID-19 public health crisis and are consonant with the Center’s focal areas: indoor environmental quality, renewable energy and energy efficiency, and water resources.

Applications of up to $10,000 are invited from current and new 2020-21 SyracuseCoE Partner Program firms. Companies at all Partner levels — Industry, Affiliate and Start-Up — are invited to apply. Projects must address a COVID-19 challenge with SyracuseCoE’s core focus areas of indoor environmental quality, clean and renewable energy and water resources. We welcome research engagements with faculty and students, support for product development and testing, market analysis, proposal match requirement, and more.

Acumen Detection is an agtech, Start-Up member of the Partner Program who has already put a SyracuseCoE Innovation Fund award to work addressing the pandemic. Acumen, a recipient of a 2020 round 1 award, was previously commercializing its innovative technology for detecting the pathogens causing disease in dairy cows. “The Innovation Fund award we received earlier this year gave us an important opportunity to respond to the need for diagnostic testing reagents,” said CEO of Acumen Detection, Chuck Stormon. “We are adapting our testing technology and helping to find critical solutions for the COVID-19 pandemic.”

Acumen is developing a fast, point-of-use test that would dramatically assist efforts to mitigate the virus as we return to work and school. The company will manufacture and distribute test kits, once FDA Emergency Use Authorization is received. In addition, SyracuseCoE is working closely with the company’s CEO to help identify potential collaborators that can help expedite their path to market on this critical effort.

“The Central New York region has a remarkable record of research, innovation, and commercialization in environmental and energy systems,” said Eric Schiff, interim executive director of SyracuseCoE.  “The Innovation Fund awards have been used by many SyracuseCoE Partner companies to help further the commercialization of new products and services. Winning an award gives companies the potential to play a critical role in helping communities reopen and function safely as we continue to recover from the COVID-19 pandemic.”

Applications, due by Thursday, September 24, 2020 at 5:00p ET, will be invited to give a brief pitch, via Zoom, with a panel of reviewers in early October, 2020. Visit the SyracuseCoE Innovation Fund webpage to learn more, or, if interested in joining the Partner Program, contact Tamara Rosanio at tlrosani@syr.edu.

Podcast: Experts Agree on Aerosol Transmission of COVID-19: How Can Schools Manage Indoor Air to Stop the Spread?

PODCAST TRANSCRIPT

View our other Research & Technology Forums and Podcasts


Panelist Dr. Jensen Zhang is an associate editor of the professional ASHRAE journal, Science and Technology for the Built Environment. Read his recently published editorial, Integrating IAQ control strategies to reduce the risk of asymptomatic SARS CoV-2 infections in classrooms and open plan offices.


A new school year is beginning soon. Understanding the ventilation and air quality of indoor spaces is critically important. From improved ventilation modifications, to HVAC and air filtration, to physical modification of spaces, this podcast discusses the current knowledge of how to mitigate the spread of the coronavirus in indoor environments.

With strong recommendations from 239 scientists from 32 countries, including faculty from Syracuse University, the World Health Organization is now acknowledging the evidence that COVID-19 can be transmitted through aerosol droplets. Viral particles become airborne when people sneeze, cough, sing, talk or breath.

As students return to campuses and classrooms, how can faculty, teachers and building managers optimize ventilation and filtration strategies to help keep students and faculty healthy?

Panelists:

Cliff I. Davidson, Thomas C. and Colleen L. Wilmot Professor of Engineering, Environmental Engineering Program Director of Civil & Environmental Engineering, Syracuse University

Cliff Davidson is the Thomas and Colleen Wilmot Professor of Engineering in the Department of Civil and Environmental Engineering at Syracuse University in Syracuse, NY. He also serves as Director of Environmental Engineering Programs, and Director of the Center for Sustainable Engineering. He received his B.S. in Electrical Engineering from Carnegie Mellon University, and his M.S. and Ph.D. degrees in Environmental Engineering Science from California Institute of Technology. Following his PhD, he joined the Carnegie Mellon faculty where he stayed for 33 years in the Department of Civil Engineering (currently Civil and Environmental Engineering) and the Department of Engineering and Public Policy. He moved to Syracuse University in 2010.

Davidson’s research background is in the area of air quality, especially aerosol interaction with surfaces, including surfaces of fibers in a face mask or filter. He has also worked on environmental sustainability in other areas, such as the design of sustainable cities, the effectiveness of green roofs in reducing urban stormwater runoff, educational innovations for teaching sustainable engineering, and identifying the preferences of individuals and organizations for strategies to adapt to climate change. He has published over 130 papers in refereed journals and another 100 papers in peer-reviewed conference proceedings and book chapters. He has served on the editorial boards of four scientific journals, and is a Fellow in three national organizations, including the American Association for Aerosol Research, where he also served as President. He has recently been chosen as the 2021-2022 Distinguished Lecturer by the Association of Environmental Engineering and Science Professors.

Jianshun “Jensen” Zhang, Ph.D., Professor, Department of Mechanical and Aerospace Engineering at Syracuse University and Visiting Professor, School of Architecture and Urban Planning at Nanjing University, China

Jianshun “Jensen” Zhang is Professor and Director of Building Energy and Environmental Systems Laboratory, Department of Mechanical and Aerospace Engineering at Syracuse University (SU), New York, USA, and a Visiting Professor and Chief Researcher of the School of Architecture and Urban Planning at Nanjing University, China. He received his Ph.D. from University of Illinois at Urbana-Champaign and worked at National Research Council of Canada for 8 years before he joined SU.

Dr. Zhang is a co-leader of the SU-wide research cluster in Energy and Environment that promotes and coordinates multi-disciplinary research on the campus. He is an expert in room air and contaminant distribution, material emissions, air purification, building enclosure performance, and combined heat, air, moisture and pollutant simulations (CHAMPS) for integrative design and intelligent controls of buildings. He has authored/co-authored over 200 technical papers and 3 American national standards. He is Associate Editor of Journal of Science and Technology for the Built Environment (STBE, formerly ASHRAE HVAC&R Research Journal) and The International Journal of Ventilation, and serves as a Member of the Editorial Boards of Building Simulations—an international Journal, International Journal of High-Rise Buildings, and the International Journal of Architectural Frontier Research. He is Fellow of ISIAQ and ASHRAE, and current Chairman of the International Association of Building Physics. 

Mike Wetzel, PE, President & CEO, Air Innovations

Michael Wetzel is President and CEO of Air Innovations, a SyracuseCoE Partner firm that specializes in the design and manufacture of environmental control systems. Wetzel is a graduate of Clarkson University where he received a bachelor of science in mechanical engineering. He is a licensed Professional Engineer and is the holder of seven US patents.

Prior to Air Innovations, Wetzel was based in Strasbourg, France for four years working for a multinational company building cleanrooms in Europe and the Mideast. Previously he worked stateside as an engineering manager in the HVAC construction industry.

Start-up tkFabricate joins the Clean Tech Center

The Clean Tech Center at The Tech Garden is a NYSERDA-funded initiative focused on developing clean energy technology companies in Central New York. Clean tech is an emerging sector of products, services and processes that harness renewable energy sources, reduce the carbon footprint and advance sustainability. The Center offers support for entrepreneurs and early-stage companies through incubation, acceleration and retention. Company’s needs are evaluated and customized assistance is provided with funding, technical support, and commercialization. 

One new venture, tkFabricate (tkF), that has joined both the Clean Tech Center and SyracuseCoE Partner Program is aiming to help New York State achieve its goal of a carbon-neutral economy. tkF is partnering with a Dutch initiative, EnergieSprong to develop and implement feasible, affordable and market-driven deep energy retrofits for multifamily residencies. By taking precedent from existing advanced manufacturing processes used in Europe, tkF’s innovative approach promises to minimize tenant disruption by implementing 3D scanning and modeling tools that facilitate design and installation. The construction industry will have increased productivity, resulting in a reduction of installation costs of mechanical systems and building facades via vertical supply chain integration design for manufacturing and assembly.

Acumen Detection: From Cows to COVID-19

Acumen Detection, Inc., is an agtech start-up member of SyracuseCoE that is commercializing its innovative technology for detecting the pathogens causing disease in dairy cows. Operating its R&D and manufacturing out of SyracuseCoE, Acumen’s main technology is based on a DNA early-detection system developed over the years as an SRC, Inc., subsidiary. Originally envisioned during Operation Desert Storm to save the lives of troops that were subjected to chemical or biological attacks, Acumen adapted this technology to revolutionize the dairy industry by helping farmers protect the health of their herds from the spread of mastitis through early detection. 

Now, in response to the COVID-19 pandemic, Acumen is adapting its testing technology again to address the critical need for diagnostic reagents. Identifying asymptomatic carriers of the coronavirus from droplets that settle on surfaces has the potential to significantly improve our indoor air quality and public health. Acumen is working to develop a fast, point-of-use test that would dramatically assist efforts to mitigate the virus as we return to work and school.

To support the company’s activities in these efforts, SyracuseCoE and Syracuse University are providing additional lab space for their immediate use to continue their timely development. A recent SyracuseCoE Innovation Fund grant will help Acumen manufacture and distribute test kits, once FDA Emergency Use Authorization is received. In addition, SyracuseCoE is working closely with the company’s CEO to help identify additional potential laboratory collaborators that can help speed their path to market on this critical effort.

The Good Life CNY Job Portal Attracts 3,000+ Prospective Applicants Over Last 6 Months

CenterState CEO continues to lead TEC Innovates’ workforce development efforts and, in partnership with Advance Media NY, has formally launched a talent attraction and retention initiative called The Good Life CNY. A branded website connects CNY companies’ open positions with job seekers. The all-in-one resource helps sell the region as a great place to live, work and play in order to attract talent for many of the region’s industries with the highest demand for skilled workers. The website weaves a narrative of the high quality of life available in CNY through diverse culture, seasons and activities, the availability of good education and all within an affordable, central location in the Northeast. 

The majority of funding for this campaign is coming directly from the companies with the highest demands for talent, many within the TEC regional cluster. Syracuse University and SyracuseCoE have also invested in the effort, given the direct benefit to companies within the TEC Innovates cluster.

There has been a significant amount of traffic showing early success. In the past 6 months over 30,000 unique users visited the main site, mainly from nearby cities such as Boston, New York City, Philadelphia, Columbus, and Detroit. Promisingly, the job portal has had over 3,000 unique users seeking to learn more about 7,600 CNY jobs.

CenterState CEO and Advance Media NY continue to elevate promotion of this effort within CNY and to communities with large populations of the talent our company’s demand. This effort is expected to run through the end of October 2020 with a possible continuation into 2021.

SyracuseCoE Innovation Fund Awards $20,000 to Local Companies

SyracuseCoE announced that two Upstate New York companies have been awarded funding through the SyracuseCoE 2020 Innovation Fund amounting to $20,000. The Innovation Fund is funded by the SyracuseCoE Partner Program and is designed to help companies commercialize products and technologies that have the potential to innovate and transform the market.

Acumen Detection is a Startup Partner operating out of the SyracuseCoE headquarters building that is transforming the way dairy producers across the globe monitor the health of their herds by providing pathogen detection at the point of need – on the farm. Acumen Detection joined the SyracuseCoE Partner Program in 2019 soon after its spin-off from SRC, Inc.

Acumen Detection’s 2020 Innovation Fund Project: In response to the COVID-19 pandemic, Acumen has applied its work to address the critical need for diagnostic reagents. Identifying asymptomatic carriers of the coronavirus from droplets that settle on surfaces has the potential to significantly improve our indoor air quality and public health. Acumen seeks to develop a fast, 4-hour, point-of use test that would dramatically assist efforts to mitigate the virus as we return to work and school. The grant will help Acumen manufacture and distribute test kits, once FDA Emergency Use Authorization is received.

Northeast Green Building Consulting (NGBC) is a SyracuseCoE Affiliate Partner and longtime collaborator. NGBC designs, teaches, and builds in Nature’s Image™ making use of their deep experience in the design sciences of biomimicry, resilience science & theory, and building science. 

Northeast Green Building Consulting’s 2020 Innovation Fund Project: This project synthesizes innovative research in resilience science, healthy buildings and passive strategies into a Resilience Audit and Standard‚ the “Assessment for Developing Adaptation, Persistence & Transformability for Buildings” (ADAPT for Buildings). The goal is to provide the design, development, engineering & construction industries, and building owners, with a state-of-the-art framework and tool containing quantifiable, verifiable metrics to use to analyze the performance of healthy and resilient buildings. Ultimately, the ADAPT for Buildings tool will take form as a virtual, interactive App and workbook for multi-industry use.

“The Innovation Fund Awards are a great example of how members of the SyracuseCoE Partner Program can use their membership resources to take advantage of meaningful opportunities and overcome potential barriers to commercialization,” said SyracuseCoE interim executive director Eric Schiff. “The awards, based on technical merit and sound principles, have tremendous potential to strengthen each company through the success of their projects.”

After an initial review by SyracuseCoE staff, selected applicants were invited to participate in a digital proposal pitch to a panel of judges, including members of the SyracuseCoE Industry Partners Council, collaborators and others. Eligibility forawards is extended to all current members of the SyracuseCoE Partner Program. Proposals may include collaborations with non-Partner Program firms and academic partners; however, proposals must be submitted and led by members of the Partner Program. Since 2014, more than $487,000 in project funding has been awarded under this program to support 45 projects conducted by 28 companies.

A call for proposals for the second round of the 2020 SyracuseCoE Innovation Fund Awards will be announced in the fall.

Congratulations to Wex Energy for Winning Impact Prize

Congratulations to WexEnergy, a SyracuseCoE Start-Up Partner and actively engaged TEC Innovates firm, on its receipt of The New York Community Trust Impact Prize at the New York University Tandon School of Engineering’s Urban Future Prize Competition. The award includes a $50,000 cash prize and membership in the clean energy-focused ACRE incubator, located at NYU Tandon’s Urban Future Lab in Brooklyn, New York.

A Celebration: 150 Years of Environmental and Energy Innovation in Central New York

Based on a presentation by Associate Professor Ed Bogucz, Mechanical & Aerospace Engineering, Syracuse University

Written by Renee Levy


When SyracuseCoE headquarters opened in 2010, it became a pioneering building in the city, the region and, perhaps, New York state. One of Syracuse’s first LEED Platinum buildings, SyracuseCoE was built as a showcase of green building technology; a living lab where such technologies are developed and tested; and a hub for technology transfer, connecting student and faculty researchers at Syracuse University, SUNY-ESF, SUNY Oswego and Upstate Medical University with local industry to develop technologies and commercialize innovative products for market.

One hundred years earlier, at the same location—on the corner of East Washington and Almond streets—Lyman C. Smith built the L.C. Smith and Bros. Typewriter Company. Smith was an innovator, local industrialist and benefactor of engineering education at Syracuse University. That symbiosis is no aberration. Syracuse University’s 150-year history is deeply intertwined with innovation and entrepreneurship in the region.

When Syracuse University opened its doors in March 1870, Syracuse was a boomtown and the 29th largest city in the United States. The city’s growth had been fueled by the opening of the Erie Canal in 1825, which along with construction of multiple rail lines, established Syracuse as a thriving hub for advances in civil engineering and canal-to-rail intermodal transportation.

A Cradle of Industry and Innovation

Syracuse’s first known industrial incubator was the C.E. Lipe Machine Shop, established in 1880 by mechanical engineer Charles Lipe. At the 20,000-square-foot Lynch Building on South Geddes Street, Lipe worked on his own inventions and rented space to others, including Herbert Franklin, Alexander Brown and Smith, originally known for the L.C. Smith shotgun. The Lipe Shop became recognized as the “cradle of Syracuse industry” with a prowess for precision manufacturing: the ability to make small parts accurately.

Lipe and Brown invented the Hy-Lo Bi-Gear for bicycles. They later turned their attention to gears and transmissions for the auto industry. Franklin was experimenting with automobile design, and the first Franklin automobile was built at the Lipe Shop. Brown also teamed with Smith on improving the design of the typewriter. Along with Smith’s brothers, Wilbert Smith and Hurlburt W. Smith, they established the Smith Premier Typewriter Works and L.C. Smith and Bros. Typewriter Company, which later became Smith Corona.

In 1901, Lyman Smith donated $75,000 to Syracuse University to build Smith Hall and establish the L.C. Smith College of Applied Science. He later gave $40,000 to build Machinery Hall, all an effort to bolster engineering education.

View the full-color PDF with all historic photos and timeline

By the 1920s, Syracuse’s largest employer was Franklin Automobile, with 5,000 workers. The company’s founder, Herbert Franklin, endowed the Franklin Chair in Transportation at Syracuse University (now known as the Franklin Chair in Supply Chain Management). The company had developed a new type of air-cooled engine that made its product lighter and more responsive than other automobiles at the time, which used conventional water-cooled engines. The air-cooled engine offered a significant reliability advantage in cold climates, given that antifreeze had not yet been invented.

Despite its technological sophistication, discounted pricing and the Great Depression led to Franklin Automobile’s demise, and the company declared bankruptcy in 1934, leaving behind a technologically skilled workforce with no jobs and a large, empty factory.

Local business leaders raised a $250,000 incentive to attract a manufacturing company to Syracuse. Investigating the possibilities, they were successful in recruiting the rapidly growing Carrier Air Conditioning Company. Willis Carrier had invented air conditioning in Buffalo in 1902 to solve the challenge of humidity control in printing plants. When Carrier’s employer ended production of the novel technology in 1914, Carrier started his own company in Newark, New Jersey. In 1922, Onondaga Pottery in Syracuse became the first customer to use Carrier’s new centrifugal chiller.

In 1937, Carrier consolidated its manufacturing from four locations in New Jersey and Pennsylvania to the former Franklin Automobile factory in Syracuse. The company grew quickly.

During World War II, the federal government built a factory in DeWitt, a Syracuse suburb, for General Electric to build jet engines. After the war, the site was auctioned off. There were two bidders: Carrier Corporation—which needed larger manufacturing facilities—and Syracuse University—whose enrollment had tripled with Chancellor William P. Tolley’s strategic decision to open the doors to returning veterans on the G.I. Bill. Ultimately, the site was divided between the two.

In 1947, Carrier moved to the larger manufacturing complex off Thompson Road. (When a traffic circle was built in front of the plant in the 1950s, it was named Carrier Circle.) The L.C. Smith College of Engineering moved from Smith and Machinery halls to buildings adjacent to the Carrier Corporation. Engineering students from that time period recall being bused from the main campus to Thompson Road, where engineering classes were held from 1948 to 1952.

By the late 1970s, Carrier had grown to become the world’s largest air conditioning company, with more than 7,000 employees in Syracuse, in research and development, manufacturing and administration. In 1979, Carrier was acquired by United Technologies Corporation (UTC). By 2004, UTC moved Carrier’s headquarters to its own headquarters near Hartford, Connecticut, ending manufacturing in Syracuse. Approximately 1,300 research and development employees remained, and more importantly, so did much of the engineering brain trust that would become crucial to the creation of SyracuseCoE.

Responding to Industry Needs

But Carrier was far from the only innovation industry in town. Beginning in the 1960s, long before Silicon Valley, Syracuse developed as a hub for electronics and instrumentation, with key firms including Welch Allyn, GE Electronics Park, Anaren, Inficon, Martin Marietta and Thomson Consumer Electronics. At the same time, there were parallel developments at Syracuse University in the creation of related academic programs to meet the needs of emerging industries. For example, Syracuse University has the second oldest computer engineering program in the country, due to a longstanding relationship with IBM. Other innovative programs included a bachelor’s degree in environmental engineering, a minor in energy systems and a master’s degree in energy systems.

Central New York was also home to a cluster of successful engineering firms, most prominently O’Brien and Gere, founded by William Stanton Gere, a 1917 graduate of Syracuse University and son of one of Syracuse University’s first known civil engineering graduates, William Anson Gere, who earned his degree in 1884.

Ed Bogucz, founding director of SyracuseCoE, came to the L.C. Smith College of Engineering as a young faculty member in 1985, attracted by the University’s proximity to Carrier Corporation and the possibility of research collaboration through SU’s newly established Center of Advanced Technology in Computer Applications and Software Engineering (CASE) Center. It was a good move. His first sponsored research project was a project for Carrier funded through the CASE Center.

In the early 1990s, Syracuse University Chancellor Kenneth Shaw led a process to reduce the University’s budget and better respond to market demands. As part of the restructuring effort, the University combined the L.C. Smith College of Engineering and the School of Computer and Information Science to create the College of Engineering and Computer Science (ECS). In 1995, Bogucz was named ECS’s interim dean, charged with developing a strategic plan for the college as it completed its downsizing.

Bogucz’s vision was to strengthen ECS by hiring faculty members in areas that aligned with strengths in the local economy and to strengthen collaborations with local firms. At the same time, the Metropolitan Development Association (MDA) was developing Vision 2010, a blueprint to strengthen the CNY economy. The regional blueprint identified seven key CNY industry clusters, including environmental quality and energy systems. In 1996, the College of Engineering and Computer Science adopted a strategic plan that included investments in faculty and facilities aligned with Vision 2010 priorities. In July 1996, Bogucz was named ECS’s dean, charged with implementing the plan.

To advance Vision 2010, the MDA organized working groups for each industry cluster. The working group for environmental and energy systems was co-chaired by Cornelius B. Murphy G’70, chief executive officer of O’Brien & Gere. In 1998, the group invited Bogucz to facilitate a brainstorming of possible areas for collaboration among Central New York companies. What emerged was a plan to develop new technologies for green buildings, an idea being developed by the fledgling U.S. Green Building Council and supported strongly by Carrier.

Planting Seeds for SyracuseCoE

From there, things moved quickly. In 1999, the College of Engineering and Computer Science recruited Jensen Zhang, the first faculty member hired to build capacity in areas related to indoor environmental quality. The following year, the MDA, now known as CenterState CEO, launched the New York Indoor Environmental Quality (NYIEQ) Center to promote regional university-industry collaborations. In 2001, Bogucz led efforts on a successful proposal to the state to establish the Environmental Quality Systems (EQS) Strategically Targeted Academic Research (STAR) Center, led by Syracuse University in collaboration with the NYIEQ Center, MDA and 10 academic and research institutions. H. Ezzat Khalifa, director of Carrier R&D programs at United Technologies Research Center, was hired to lead the EQS STAR Center.

Later that year, New York State announced a new Centers of Excellence program to foster collaboration between the academic research community and the business sector to develop and commercialize new products and technologies. In 2002, SyracuseCoE was established by New York State as one of the first five statewide Centers of Excellence, leveraging activities of the NYIEQ and EQS STAR centers, with a mission to encourage and fund collaborative projects that develop new environmental and energy systems products and services, serving as a conduit between university researchers and industry.

Since its creation, SyracuseCoE has supported more than 200 projects that assisted more than 70 local companies, which report creating or retaining more than 1,100 jobs to date. In addition, SyracuseCoE has supported more than 50 Syracuse University faculty members in seven schools and colleges through its Faculty Fellows Program, which provides competitively awarded funding for seed projects.

In 2009, SyracuseCoE hosted the ninth International Society of Indoor Air Quality and Climate Healthy Buildings conference and exhibition, which attracted more than 1,700 attendees from 44 nations. The following year, SyracuseCoE opened its LEED-Platinum living laboratory headquarters in downtown Syracuse, on the brownfield that was the site of the L.C. Smith and Bros. typewriter factory. A thriving hub for industry-University collaboration and an anchor to Syracuse’s Innovation Crossroads, SyracuseCoE’s unique facilities have attracted international research teams, including the groundbreaking COGfx Study on the impact of indoor environmental quality on human cognition led by the Harvard T.H. Chan School of Public Health in 2014.

Last year, leading researchers from 33 countries gathered in Syracuse for the seventh International Building Physics Conference, hosted by SyracuseCoE and chaired by Zhang, Syracuse University professor of mechanical and aerospace engineering. It was the first time that the triennial meeting, the world’s premier building science conference, was held in the United States, attracted to Syracuse by the cutting-edge research and innovation related to indoor air quality, energy efficiency and high-performance building technologies.

Syracuse University and the Central New York community are undisputed leaders in the field, all because Syracuse University had the foresight to build programs, hire faculty and invest in facilities in areas relevant to local industry. The result: significant impact on our regional economy, our built environment and natural environments and our water resources.

Innovation Fund Call for Proposals

2020 Innovation Fund Call for Proposals Now Open to Partner Firms!

LEARN MORE AND APPLY

SyracuseCoE invites proposals to the Innovation Fund from current SyracuseCoE Partner companies for up to $10,000. It is anticipated that there will be five awards. The Innovation Fund is funded by SyracuseCoE Partner Program and is designed to help companies commercialize products and technologies that have the potential to transform and innovate the market. You must be a member to apply, but it’s not too late, you can join the SyracuseCoE Partner Program today! Projects must be aligned with one or more of SyracuseCoE’s three core areas:

  • Indoor Environmental Quality and Building Energy Efficiency
  • Clean & Renewable Energy
  • Water Resources

Previous companies who were Innovation Fund winners include:

Visit the Innovation Fund Projects page to see how other Partners have used these funds. The application deadline is 5:00pm EST, Friday, March 20th, 2020.

Industry Partners Innovation: Innovative Air Handling

Technology transfer from a Syracuse University lab to local business could revolutionize the residential HVAC market.

When Upstate Parts & Supply needed engineering help to develop a new HVAC unit, it turned to SyracuseCoE, which connected the company to faculty members in Syracuse University’s College of Engineering and Computer Science (ECS). With assistance from SyracuseCoE and ECS faculty, Upstate successfully developed and commercialized its NuClimate Chilled Beam, which was subsequently licensed by Carrier, sold to Zehnder Group and has been installed all over the world.

If we’re successful, you could see new residential HVAC products on the market using this technology by 2025, not to mention the possibility of adapting the technology to retrofit current units. This is potentially a billion-dollar market.

John A. DiMillo

That track record is one reason ECS faculty members Thong Dang and Mehmet Sarimurat are partnering with Upstate Parts & Supply to pursue development of a concept developed in their SU lab that could revolutionize the residential HVAC market. Dang and Sarimurat envisioned developing a compact, high-efficiency air handler for residential HVAC systems that they believe will use 35 percent less energy than current models.

SyracuseCoE staff members assisted Upstate Parts & Supply and Syracuse University in developing a successful proposal to the U.S. Department of Energy for Phase 1 small-business technology transfer (STTR) projects. The $200,000 grant was the first federal Small Business Technology Transfer (STTR) funding the firm has received in its 33-year history and one of only 12 awards the DOE’s Building Technology Office funded nationwide, demonstrating strong promise for the concept.

“The collaboration between SyracuseCoE, SU faculty and Upstate Parts & Supply is a model example of what SyracuseCoE does—providing a bridge to transfer SU technologies to a small company to aid commercialization that will eventually benefit the regional economy, consumers and the environment,” says Tammy Rosanio, associate director of partner programs.

The project seeks to develop a novel air handling unit for residential heating and cooling systems that synergistically integrates its fan and heat exchanger. This innovation, if successful, could produce an air handler that, compared to conventional units, is 30 percent smaller and uses 35 percent less energy, all while improving the overall performance of its HVAC system by at least seven percent.

Upstate Parts & Supply received the STTR grant July 1. According to John A. DiMillo, a company vice president, the Phase I grant supports advanced computational fluid dynamics studies performed by SU faculty and students to evaluate and refine feasibility of the concept. SyracuseCoE helped jump-start the project through work done this summer by students and faculty in SyracuseCoE’s Analysis and Design Center under the TEC Innovates program. A team of students will also be working with Upstate Parts & Supply during the academic year under a mechanical engineering capstone project to design and build a test stand that is capable of measuring the performance of an air-handler unit, work also supported by the TEC Innovates program.

The goal is to demonstrate feasibility by the end of June 2020 and pursue a Phase 2 grant. A successful Phase 2 grant of $1 million would support building and testing a prototype unit.

SyracuseCoE Awards Funding for 8 Research and Innovation Projects Led by Faculty Fellows

Projects engage 15 faculty members from 4 universities and a local startup partner

SyracuseCoE announced today that eight research and innovations projects led by its Faculty Fellows were competitively selected to receive awards totaling $109,368. The new projects engage 15 cross-disciplinary faculty members from Syracuse University, SUNY College of Environmental Science and Forestry (ESF), SUNY Oswego and SUNY Upstate. In addition, Density, Inc. a SyracuseCoE industry partner company, is a co-investigator on one project.

The SyracuseCoE Faculty Fellows Program supports seed projects that strengthen faculty scholarship in clean and renewable energy, indoor environmental quality, and water resources. The program brings together a diverse community of faculty members from many disciplines. Researchers from four schools and colleges at Syracuse University, two at SUNY ESF, one from SUNY Oswego and one from SUNY Upstate received awards.

The goal of Faculty Fellows program is to bolster collaboration and discovery, strengthening Syracuse University’s growing research portfolio. The program is critical to SyracuseCoE’s core mission to create innovations in environmental and energy technologies. In addition, projects are encouraged to strategically target research topics that contribute to economic development of local and New York State businesses.

“We are extremely proud of the momentum that the SyracuseCoE Faculty Fellows Program has had in the past 4 years, growing to nearly 60 researchers,” said Laura J. Steinberg, SyracuseCoE interim executive director. “These awards can lead to a significant “next step” for faculty by fostering further exploration, allowing them to publish new findings or even by helping them to win additional funding.”

The projects, principal investigators (listed first), and their collaborators are:

A High-throughput Analytical Workflow for Identification and Quantification of Cyanobacterial Toxins in Environmental Water Samples

  • Teng Zeng, Assistant Professor, Civil & Environmental Engineering, College of Engineering and Computer Science, Syracuse University

A New Approach to Evaluate Energy Savings, Thermal Comfort and IAQ from Occupant-Centric Building Controls

  • Bing Dong, Associate Professor, Mechanical & Aerospace Engineering, College of Engineering and Computer Science, Syracuse University
  • Meng Kong, Research Assistant Professor, Mechanical & Aerospace Engineering, College of Engineering and Computer Science, Syracuse University
  • Steven VonDeak, Co-founder and Chief of Staff, Density, Inc
  • Jianshun Zhang, Professor, Mechanical & Aerospace Engineering, College of Engineering and Computer Science, Syracuse University

Development of Improved Poplar Lines for Biofuel Production

  • Heather Coleman, Associate Professor, Biology, Biotechnology, College of Arts & Sciences, Syracuse University

Establishment of Initial Exploratory Research for the Mycelium Research Group

  • Daekwon Park, Assistant Professor, Syracuse Architecture, Syracuse University
  • Jeongmin Ahn, Associate Professor, Mechanical & Aerospace Engineering, College of Engineering and Computer Science, Syracuse University
  • Zhao Qin, Assistant Professor, Civil & Environmental Engineering, College of Engineering and Computer Science, Syracuse University
  • Nina Sharifi, Assistant Professor, Syracuse Architecture, Syracuse University

Measuring the Vertical Profile of Air Pollution and Noise Near Interstate-81

  • Jamie Mirowsky, Assistant Professor, Chemistry, SUNY College of Environmental Science and Forestry
  • Judy Crawford, Visiting Researcher, SUNY Upstate Medical University
  • John Hassett, Professor, Chemistry, SUNY College of Environmental Science and Forestry
  • Meng Kong, Research Assistant Professor, Mechanical & Aerospace Engineering, College of Engineering and Computer Science, Syracuse University

Net Zero Retrofit Campus Housing Pilot Project

  • Nina Sharifi, Assistant Professor, Syracuse Architecture, Syracuse University
  • Bing Dong, Associate Professor, Mechanical & Aerospace Engineering, College of Engineering and Computer Science, Syracuse University

Production and Evaluation of Activated Biochar from Shrub Willow for Water & Wastewater Treatment Applications

  • Nosa Egiebor, Professor, Environmental Resources Engineering, SUNY College of Environmental Science and Forestry
  • Tao Wendong, Associate Professor, Environmental Resources Engineering, SUNY College of Environmental Science and Forestry

Synthesis of Silicon, Tin and Phosphorus Nanoparticles as Anode Materials for High-Performance Sodium Ion Battery for Grid Scale Energy Storage

  • Mohammad Islam, Associate Professor, Physics, SUNY Oswego

Projects were selected based on responses to a request for proposals issued by SyracuseCoE earlier this year. Each faculty member who is involved in a project is appointed as a SyracuseCoE Faculty Fellow for a three-year term. Eight new faculty members have been appointed. The program has supported nearly 60 researchers to date.

SyracuseCoE is New York State’s Center of Excellence in Environmental and Energy Systems, which is led by Syracuse University in collaboration with SUNY ESF, SUNY Oswego, CenterState Corporation for Economic Opportunity and dozens of industry partners.

New York’s Entrepreneurial Ecosystem, Featuring FuzeHub and Ducted Wind Turbines

A SyracuseCoE Research & Technology Forum

It is an exciting time to be an entrepreneur in Central New York!  This forum offers guidance on how businesses can use resources like FuzeHub and SyracuseCoE.

New York State offers a host of resources designed to enable new and existing businesses to become more competitive through manufacturing improvements and help with the development of innovative technologies and processes. Centers and programs that are supported by Empire State Development’s Division of Science, Technology and Innovation (NYSTAR) emphasize the importance of working with industry as a way to leverage New York State’s technology strengths to produce new products. The state also offers other innovation development support resources, including financial incentives to foster university collaboration, research and innovation.

Learn more about one of those ecosystem resources, FuzeHub, who provides programs and resources for manufacturers in New York State. Julianne Clothier, FuzeHub’s Industry Engagement Manager, shared information about FuzeHub’s suite of programming designed to ignite growth and prosperity in New York’s manufacturing sector, one manufacturer at a time! 

We were also joined by Joe Dickson, CEO Ducted Wind Turbines, Inc., a SyracuseCoE Start-up Partner company based in Potsdam, NY. He shared how NYS supports and programs like the SyracuseCoE Innovation Fund give companies like Ducted Wind Turbines new opportunities for growth and success. Joe also shared sage wisdom from his broad 30-year experience working with six diverse startups within NYS’s entrepreneurial ecosystem.

Presenters:

Julianne Clouthier Industry Engagement Manager, FuzeHub

Julianne oversees the Jeff Lawrence Innovation Fund which is comprised of manufacturing grants, a commercialization competition and an innovation challenge. The Fund provides $1M annually to not-for profits, manufacturers and early-stage technology companies in New York. Julianne has over ten years of economic development experience and has worked on numerous microenterprise, business expansion, and infrastructure projects. She is a member of the Tech Valley High School Business Alliance and serves as a mentor, judge and panelist for numerous innovation and entrepreneurial programs.  Julianne received her MBA from the University at Albany, a Bachelor of Arts in Communications from Mercyhurst College and is a recent graduate of AlbanyCanCode -Front End Web Development.

Joe Dickson CEO, Ducted Wind Turbines, Inc.

Joe Dickson, currently the CEO of Ducted Wind Turbines, Inc. and also recently served as a co-founder and the CEO of Pelitex, is a veteran entrepreneur who has served as the founder and/or senior C-Level executive of seven high-tech start-up firms across multiple industry and technology sectors during his 30-year career. His first start-up, a spin out from GE, achieved a 100X ROI in 3 years.  Since then he has been a part of 6 other start-ups across industry areas as diverse as advanced materials, IT, renewable energy, microelectronics, medical devices, and biotech.  
Mr. Dickson has helped raise over $50MM in venture and private equity capital, and also has extensive experience in mergers and acquisitions. He is an expert in business and financial modeling, market validation, strategic positioning, and business plan execution. Mr. Dickson has taught entrepreneurship at both Cazenovia College and Syracuse University, and was named Entrepreneur of the Year by the Syracuse Citizen’s Foundation in 1992. Mr. Dickson has a BS in Chemistry from Syracuse University and an MBA from the University of Rochester.

Up to $3,000 for SyracuseCoE Partners to Hire an Intern this Summer

SyracuseCoE helps companies provide students with invaluable “real-world” experience

SyracuseCoE is seeking applications from its industry partners for funding available through the 2020 Summer Industry Collaboration Internship Program.  The program supports paid internship opportunities for SyracuseCoE Partner Program companies to host a student pursuing a degree in science, engineering, or architecture. Throughout the course of the internship, the student will increase his or her knowledge and technical skills by engaging in hands-on work at SyracuseCoE Partner firms related to indoor environmental quality (IEQ), high performance/green building, clean and renewable energy, and water resources.

In addition to providing experiential learning, the program also aims to give students the opportunity to establish valuable relationships with local industry leaders and increase post-graduation retention in the Central Upstate region of New York. Interns will be invited to SyracuseCoE networking events throughout the summer, and they will develop and present an end-of-summer poster showcasing the project(s) on which he/she worked.

To date, 32 companies and 99 students have participated in this program, which is supported by annual fees paid by companies that participate in the SyracuseCoE Partner Program. This year, SyracuseCoE intends to fund up to 8 summer internships at Partner firms, with each commitment providing up to $3,000 per company. The deadline to apply is February 28th.

Learn more about the member benefits of the SyracuseCoE Partner Program.

SyracuseCoE Faculty Fellows Program Now Accepting Applications for 2020

LEARN MORE AND APPLY

SyracuseCoE—New York State’s Center of Excellence in Environmental and Energy Systems—is offering funding to support seed projects that strengthen faculty scholarship in clean and renewable energy, indoor environmental quality, and water resources. Successful applicants will participate in the SyracuseCoE Faculty Fellows Program, which provides leadership for SyracuseCoE’s core technical areas and supports engagements with academic and industry partners. Funding awarded to seed projects also is intended to catalyze research that will lead to future opportunities, including funding from federal agencies or commercial sources.

The Faculty Fellows Program is open to faculty members who hold full-time appointments at SyracuseCoE Academic Partner institutions: Syracuse University, SUNY College of Environmental Science and Forestry (SUNY-ESF) and SUNY Oswego. All proposals must address how the use of the Faculty Fellow seed funding will lead to a significant “next step” in the research, lead to or leverage follow-on funding opportunities, and contribute to establishing SyracuseCoE and its Partner institutions as thought leaders in the targeted area. In addition, projects are encouraged to strategically target research topics that hold promise for contributing to economic development of local entities and New York State businesses.

SyracuseCoE intends to award up to $75,000 in this round. Proposals for seed projects that engage multiple faculty members may request up to $20,000. Seed projects involving a single faculty member are eligible to receive up to $10,000. The deadline for applications is January 6, 2020.

Driving Entrepreneurship: Exploring Models of Innovation and Supports

Innovation and entrepreneurship come in many shapes and sizes. At this month’s SyracuseCoE Research & Technology forum, we will focus on different models of innovation and growth, including an award-winning student-led start-up, PAANI, that has developed clean water solutions for global health; an internal model of innovation in a global company, Ramboll, that engages students and the community to leverage hyperspectral imaging to address harmful algae blooms; and a federal agency, U.S. Trade Development Agency, that provides grant funding to support U.S. businesses in emerging markets around the world.
Join us for an exciting discussion of unique models of innovation and entrepreneurship and the agencies that support their growth.


Moderator:

Professor Loiuse Manfredi

Louise Manfredi, Assistant Professor, Industrial and Interaction Design, College of Visual and Performing Arts, School of Design, Syracuse University

Dr. Louise Manfredi is an assistant professor of industrial and interaction design at Syracuse University, New York and a newly appointed Syracuse CoE Faculty Fellow. Dr. Manfredi is focusing on two new areas of research interest (1) sustainable material testing, development, and adoption and (2) finding methods to improve the working relationship between designers and STEM practitioners. Both research agendas are woven through her teaching; she is always seeking innovative academics and industry partners to work with to create more immersive learning experiences for her students. Prior to Syracuse University, Dr. Manfredi was an assistant professor at Millersville University of Pennsylvania, and a postdoctoral scholar in neuroscience and biomechanics, and entrepreneurship fellow at the University of Chicago. She holds a Ph.D. in mechanical engineering (2011) and a B.Des. in product design (2006) from the University of Leeds, UK.


Presenters:

Nikita Chatterjee ’20, Co-founder & CEO, PAANI, B.S., Economics, The Maxwell School, Syracuse University

Nikita is a rising senior, studying Economics at Syracuse University. She is originally from a small town in North Jersey, and the eldest daughter to two immigrants from Kolkata and Mumbai, India. As a first-generation college student, Nikita credits her success in part to the entrepreneurial resources provided by Syracuse University. After graduation, she plans to go into financial consulting in the healthcare industry in India where she sees a great need due to low availability of resources.

Brianna Howard ’20Co-founder, PAANI, B.S., Public Health, The David B. Falk College of Sport and Human Dynamics, Syracuse University

Falk College of Sport and Human Dynamics, Syracuse University
Brianna is a first generation college student from Queens, NY. As a Public Health major at Syracuse University, her passion is to advocate for underserved communities who lack access to the proper resources and tools necessary to live a healthy life. Brianna’s first exposure to global health began on a trip to South Africa in high school where she worked with a non-profit to promote access to education. In the future she hopes to work on similar projects like this to empower communities globally. In whatever career path she chooses, her goal will always be to save and impact lives as well as to give a voice to the people who are most often silenced.

Jamie Newtown, Director of Innovation, Ramboll

Mr. Newtown is the Director of Innovation at OBG (Part of Ramboll). In this position Mr. Newtown manages the Company’s ideation and execution process. As a founding member, he worked to establish the program, grow support for innovation initiatives through cultural activities such as SPARK and I-Factor, and identify ways to leverage the collective intelligence of the Company to differentiate from the competition. Responsibilities have included strategy and action plan development, leadership of the Innovation & Technology Committee, digitalization development, and evaluation of new business models stemming from the great ideation developed within the organization. Mr. Newtown also serves as the resource manager for a group of environmental, health, and safety (EHS) compliance practitioners. This group provides technical delivery of solutions for clients.

David Riposo, Financing & Implementation Manager, U.S. Trade and Development Agency

As the Financing & Implementation Manager for the U.S. Trade and Development Agency’s sub-Saharan Africa team, David Riposo directs a portfolio of more than 70 clean energy projects in sixteen African markets. Mr. Riposo’s portfolio features a spectrum of technologies and scales, from gas infrastructure in the Niger delta to utility-scale wind and solar projects in frontier markets and portfolios of mini-grids in remote communities. Before joining USTDA, Mr. Riposo led donor-funded energy access programs in Africa and South Asia for five years, including a USAID-funded cookstove market development program that led to the deployment of 40,000 fuel efficient stoves in Bangladesh. Previously, he was a strategy consultant advising companies and governments on clean energy markets and technologies. His professional experience also includes establishing a renewable energy consulting business in India and helping hundreds of wind and solar project developers define the pre-construction energy generation potential of their projects. Mr. Riposo earned a B.S. from the State University of New York, College of Environmental Science and Forestry and an M.S. from the University of Maryland, College Park.

Nine Companies Selected to Receive Funding to Advance Innovations

SyracuseCoE gives Innovation Fund Awards to Partners to help commercialize innovative products and services

SyracuseCoE announced that it has selected nine companies from CenterState/Upstate/Central New York to receive awards from its 2019 SyracuseCoE Innovation Fund competition. SyracuseCoE’s Innovation Fund Program is designed to target specific barriers to the commercialization of potentially transformative innovations by companies who are members of the SyracuseCoE Partner Program.

The nine award-winning projects are:

Acumen Detection was awarded Innovation Fund support to expand the commercial use of their existing patented technology (the Acumen PCR®MYCOB assay) by development of a screening test to detect Mycoplasma bovis from deep nasal swabs of cattle. Early detection of Mycoplasma in cattle will aid in making timely and accurate herd management decisions and enable the farmer to increase their profits by saving the energy wasted on feeding, housing and treating sick and non-productive animals those can spread the disease to healthy animals.

LC Drives received an Innovation Fund award to support its development of the next generation of are smaller, lighter, more efficient electric motors.  This project will help the company scale the machine design and related manufacturing equipment on the path for use in utility scale wind turbines ultimately reducing the cost of wind power.

Cocoon construct is developing a prefabricated panelized system to unlock the market for whole‐building deep energy retrofits in New York State and create jobs at multiple manufacturers throughout the product’s supply chain. The proposed project will support the design of a proprietary attachment system for affixing Cocoon prefabricated wall panels to existing building structures, as well as modeling and simulation to validate the system’s performance.

Cocoon construct also received support in 2019 for a second project designed to develop a Certification Test Plan for their prefabricated panelized system. The project will include product compliance and testing protocols with the dual objectives of informing the work undertaken by a Syracuse University Mechanical Engineering Capstone project team and ensuring that the system can be tested, certified and warrantied for long‐term performance, thus enhancing its commercial readiness. Successful commercialization of the envisioned product promises to accelerate the market for deep energy retrofits and create jobs at multiple manufacturers throughout the product’s supply chain.

Ducted Turbines International (DTI) is commercializing a ducted turbine technology and received funding support to address the power electronics that connect the turbine to the grid and the manufacture of a robust blade system. With the focus on a quality supply chain that will enable a long-term reduction in the cost per unit energy ($/kWh), DTI hopes to remove these barriers, creating a ‘Turbine in a Box’ solution that will provide power everywhere to anyone. The project will demonstrate the development with a full-scale turbine test at the Clarkson Wind Turbine Test Site.

DTI also received an award in 2019 to help reduce the cost of its turbine duct by integrating a rotational molding manufacturing product that can significantly reduce the cost of the duct, speeding the path to commercialization.

Edison Innovative Power is developing the world’s first SMART, configurable, multi-output high-voltage system. The company received an Innovation Fund award to perform multiple iterations of advanced thermal simulation and analyses to drive design optimization and verification prior to moving to production.

Farm to Flame Energy has developed biomass-powered generators and grinders are smokeless, odorless and easy to manage. The company received an Innovation Fund award to develop a demonstration unit that will advance their path to commercialization.

Ramboll is in the process of establishing BloomOptix as a start-up and will enter the GeniusNY competition in October 2019. The Innovation Fund program funding will be used for the purchase of a hyperspectral sensor and unmanned vehicle technology that will contribute to the future commercialization of the BloomOptix team’s innovation.

tkFabricate was awarded an Innovation Fund project to support the design and construct a prototype “Integrated Mechanical Systems Pod (IMSP)” sized to provide space conditioning (heating and cooling) and domestic hot water for individual attached single-family homes in the Syracuse Housing Authority’s “Scattered Sites” residences. This packaged mechanical unit will include air-to-water heat pumps and be an integral part of full building deep energy retrofits targeting increased thermal comfort and indoor air quality while achieving 75% energy use reduction when measured from existing building loads, thus enabling the residences to be capable of net zero energy use with subsequent installation of photovoltaic panels.

Vistex Composites received funding to perform product trimming in-house at their manufacturing facility and improve safety & air quality (Helps meet OSHA Standard 1910.1000 (air contaminants)). This will eliminate the frustrations associated with the two current options which are: 1. Attempting to perform trimming manually with facemask and air filter which can be unsafe; or 2. Outsourcing this portion of the manufacturing process – causing the company to lose production opportunities (significant unnecessary costs make price non-competitive & drastically extends lead times).

“Central New York companies, like those in the SyracuseCoE Partner Program, have an entrepreneurial spirit and a history of pioneering innovation”, said Laura J. Steinberg, SyracuseCoE’s interim executive director. “The SyracuseCoE Innovation Fund awards help collaborating companies bridge gaps in the commercialization process and ultimately contribute to stronger companies and products that have a greater chance of success in the marketplace. ”

SyracuseCoE is New York State’s Center of Excellence for Environmental and Energy Systems. Funding for the SyracuseCoE Innovation Fund is provided by industry members of the SyracuseCoE Partner Program. The nine awards in the current round total $107,146. To date, awards from the program have totaled $467,345 and supported 43 clean energy projects at 27 companies throughout New York State. Eligibility for Innovation Fund awards is open to all current members of the SyracuseCoE Partner Program. The next call for proposals is expected in February of 2020. Applicants submit a proposal online and then pitch their project to a panel of reviewers from the region. To learn more about joining the SyracuseCoE Partner Program, contact Tammy Rosanio at tlrosani@syr.edu.

Old School Meets New School: King + King Architects Transform an 1849 Schoolhouse into a High-Performance, Low-Carbon Residence

This Stone Schoolhouse lies on the outskirts of Syracuse, just off State Rt. 92 in Fayetteville, New York. Constructed in 1849 with 22” local limestone walls and heavy timber framing, the structure has stood the test of time through maintenance and neglect, hot humid summers and bitterly cold winters.
 
Looking forward through the 21st century, how do we shepherd buildings with historic character into the future using healthy, safe and comfortable design modifications… all the while with minimal energy use and net-zero aspirations? King + King Architects present their approach to transforming an 1849 stone schoolhouse into a high-performance, low-carbon residence. 
 
Designed to the guidelines of the Passive House EnerPHit standard, we strive to achieve all of the above! As a precedent to historical masonry deep energy retrofits in cold climates, join us as we embark on this endeavor of simultaneously incorporating high-quality historic building principles in practice with the analysis and scrutiny of Passive House building science. The new residence has systems in place for energy use monitoring, real-time wall system analysis and CO2 sensing to ensure this structure endures another 170 years, at least. 
 
Presenters:
Tom King, CPHD, LEED AP
Team Leader, King + King Architects
 
Tom is a Certified Passive House Designer and Tradesperson, trained in the construction, detailing and energy modeling of high-performance buildings. At King + King he lives in the details. Designing high performing envelope systems for all buildings, large and small. Whether it be Net Zero, Passive House, new construction or renovation, complying with limited budgets and Energy Codes, or striving toward the highest performance metrics; every building stands to benefit from airtight construction, continuous insulation and high quality detailing coupled with integrated mechanical system strategies. Tom pushes this boundary and challenges colleagues and consultants alike to think, design, and construct more holistically. 
 
Tom is a graduate of Stevens Institute of Technology, where he held a leading role in the research, design and construction of the SURE House’s resilient and sustainable components. The SURE House is a net-zero energy prototype for resilient residential construction targeting coastal neighborhoods increasingly affected by a changing climate. The Stevens SURE House team, led by six graduate students including Tom, won an unprecedented seven of ten competitions at the 2015 US Department of Energy Solar Decathlon competition. Tom holds a Master’s in Engineering from Stevens Institute of Technology and a Bachelor of Science in Architecture from Roger Williams University. 
 
Jim King, AIA, LEED AP
Partner, King + King Architects
 
Jim is partner-in-charge of the K-12 Education Design Studio, specializing in the K-12 education market and its intrinsic connection between space planning, teaching and learning. Carrying an excellent reputation among educators as a collaborator and instructional space specialist. As an employer in a STEM field, Jim understands the importance of partnering with education at all levels. He frequently serves as an in-class resource for project-based learning activities, provides opportunities for job shadowing, and hosts professional development sessions for educators. Jim frequently hosts students in his office for “problem-solving days.” Jim believes that engagement of students from diverse backgrounds with STEM businesses is critical to increasing the numbers who choose STEM-focused careers. 
 
Jim serves on the leadership teams of the Central NY and Northern NY STEM Hubs, the Empire State STEM Learning Network and the ESM and North Country STEM Learning Ecosystems. This involvement has helped fuel Jim’s passion to change the way education is delivered in NY State and thought the United States. Under Jim’s leadership, King + King is a founding partner in the Collaborative Educators Summit, a two-day cost-free professional development experience for school-based teams. Jim holds a Bachelor of Architecture from Syracuse University and has been a licensed architect since 1983.
 

Research & Technology Forum Series 

SyracuseCoE offers regularly scheduled forums and networking showcasing innovative research, technologies and other opportunities of interest to stakeholders and community members. Past topics have included groundbreaking industry projects to modernize the HVAC systems at the Sistine Chapel, workshops to help state agencies develop funding priorities, and research on the impact of “green” buildings on cognitive function. To receive notice of these events, sign up for email updates at the “Join our mailing list” tab at the bottom right corner of the website. Visit the Research & Technology Forum page to see the archive.

Research to Commercialization: Upstate Parts & Supply Teams with Syracuse University to Win $200,000 to Evaluate Next-generation HVAC Technology

Upstate Parts and Supply, Inc. from East Syracuse, NY leveraged assistance from TEC Innovates and a collaboration with Syracuse University to win a $200,000 grant from the U.S. Department of Energy (DOE) Small Business Technology Transfer (STTR) program to evaluate the feasibility of a next-generation residential HVAC air handler.

The project is intended to improve the energy efficiency of HVAC systems used in homes.  Upstate Parts & Supply, Inc. will collaborate with Syracuse University researchers to develop a next-generation Compact, High-Efficiency Air Handling Unit (CHE-AHU) for residential heating, ventilation and air conditioning (HVAC) systems. The CHE-AHU will synergistically integrate the fan and heat exchanger, which is expected to reduce energy consumption of the air handler by at least 35%, improve the overall performance of the HVAC system by at least 7%, and reduce overall size by at least 30% compared to current technologies.

The TEC Innovates program identified the DOE funding opportunity and facilitated a collaboration between Upstate Parts & Supply and Professors Thong Dang and Mehmet Sarimurat of Syracuse University’s Department of Mechanical and Aerospace Engineering to develop the project, which is based on technology developed previously by Prof. Dang and his students. TEC Innovates, which is supported with funding from the U.S. Department of Commerce, spurs innovation and entrepreneurial activity in the Central New York region to develop new and improved products for “Thermal and Environmental Controls (TEC)”.

“It is exciting for Upstate Parts and Supply to partner with Syracuse University faculty to commercialize a technology developed from research at the University,” said vice president, John DiMillo. “This project has the potential to both innovate and grow the economy and would not have happened without the support of SyracuseCoE’s TEC Innovates Program.”

Learn more about the U.S. Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research (SBIR) program.

Call for Proposals – 12 Awards of Up to $10,000 Available for Commercialization Activities

2019 Innovation Fund Call for Proposals Now Open to Partner Firms!

LEARN MORE AND APPLY

SyracuseCoE invites proposals to the Innovation Fund from current SyracuseCoE Partner companies for up to $10,000. It is anticipated that there will be twelve awards. The Innovation Fund is funded by SyracuseCoE Partner Program and is designed to help companies commercialize products and technologies that have the potential to transform and innovate the market. You must be a member to apply, but it’s not too late, you can join the SyracuseCoE Partner Program today! Projects must be aligned with one or more of SyracuseCoE’s three core areas:

  • Indoor Environmental Quality and Building Energy Efficiency
  • Clean & Renewable Energy
  • Water Resources

Previous successful companies who were Innovation Fund winners:

Visit the Innovation Fund Projects page to see how other Partners have used these funds. The application deadline is 5:00pm EST, Tuesday, September 24, 2019.

Carbon Standards Re-Examined: Syracuse Researcher Charles Driscoll Collaborates with Harvard and Boston University

SyracuseCoE Faculty Fellows News

What: SyracuseCoE Faculty Fellows Researcher Charles Driscoll joined researchers from the Harvard T.H. Chan School of Public Health and Boston University School of Public Health, and Resources for the Future evaluated the cost-benefit analysis for the U.S EPA’s Affordable Clean Energy (ACE) rule, known as a Regulatory Impact Analysis (RIA), to determine whether it incorporates the best available information and the conclusions are fully supported. The results are summarized in their working paper, Carbon Standards Re-Examined: An Analysis of Potential Emissions Outcomes for the Affordable Clean Energy Rule and the Clean Power Plan.

Context: On June 19, 2019, the EPA repealed the Obama-era Clean Power Plan (CPP) and finalized the ACE rule. The intent of the ACE rule is to establish the Best System of Emission Reduction for carbon pollution from coal-fired power plants, a requirement under the Clean Air Act. The research team evaluated the RIA by undertaking new energy modeling and conducting side-by-side comparisons of EPA’s findings and assumptions with those of other scenarios.

Key Take-Away: The results from this analysis call into question the assumptions and conclusions in EPA’s cost-benefit analysis. They demonstrate that the ACE rule does little to address climate change and is likely to have even greater adverse air quality and health effects in some states compared to no policy than EPA has projected.

Why It Matters

For the rule – By underestimating the magnitude of emissions rebound in the RIA, EPA may have overestimated the net economic benefits of the ACE rule, calling into question whether its benefits truly outweigh its costs. The effect of underestimating emissions rebound on the benefits calculation for the ACE rule depends on how large the actual emissions rebound is likely to be and where it would occur.

For health – Underestimating emissions rebound means that the ACE rule may result in more cases of respiratory illness, heart attacks, worsening asthma, and premature death in some states from exposure to higher fine particulate matter and ozone than EPA has estimated.

For states – In some states, the emissions rebound expected from the ACE rule would shift the burden of curbing CO2 emissions to the states and could undercut their ability to meet their greenhouse gas reduction goals. Emissions rebound may also impact the ability of some states to meet and maintain federal air quality standards.

For the nation – Carbon dioxide (CO2) emissions in the U.S. increased approximately 3.5% in 2018. Our analysis suggests that ACE could drive emissions higher still, making it even more challenging for the U.S. to meet its previous commitments under the Paris climate agreement and to achieve emissions reductions needed by 2030 to avoid the worst impacts of climate change.

Professor Charles DriscollUniversity Professor of Environmental Systems and Distinguished Professor, College of Engineering & Computer Science, Syracuse University is a SyracuseCoE Faculty Fellow. His research focus areas are:

  • Aquatic chemistry
  • Biogeochemistry
  • Climate change science and engineering
  • Environmental quality modeling
  • Ecosystem restoration
  • Ecosystem science
  • Stormwater management
  • Hydrology
  • Limnology
  • Soil chemistry

See a list of Professor Driscoll’s published research.

 

SyracuseCoE Chief Returns to Classroom to Inspire Next Generation of Energy and Environmental Innovators

For more than 15 years, Edward A. “Ed” Bogucz has helped put Syracuse University at the forefront of addressing global challenges for cleaner energy and healthier built environments. Now, the founding executive director of SyracuseCoE, New York State’s Center of Excellence in Environmental and Energy Systems, is returning to the classroom—to teach, research and mentor—to prepare the next generation of innovators.

Beginning Sept. 1, Laura J. Steinberg, professor of civil and environmental engineering and executive director of the Syracuse University Infrastructure Institute, will serve as interim executive director of SyracuseCoE while a national search takes place. A search committee will be appointed once the new dean of the College of Engineering and Computer Science is announced.

READ MORE

 

Industry Partners Innovation: Personal Climate Control

Collaborative Research and Commercialization Project

If you surveyed employees in any office environment on any given day, it’s likely that a significant percentage would report that the temperature made them feel uncomfortable. That’s because office heating and cooling systems typically use a single thermostat to control temperature in a zone that contains many people, and thermal comfort varies from person to person.

The possibility for allowing each employee to control the temperature in their own microenvironment is moving closer to reality, thanks to an ongoing project led by Syracuse University faculty researchers, in collaboration with Air Innovations, United Technologies Research Center, Bush Technical LLC, and Cornell University.

Ongoing Syracuse University Research: In 2015, Syracuse University began a $3.2 million ARPA-E project to develop microenvironmental control systems, called μX, to provide localized thermal management for office workers, which would dramatically reduce building energy use. With support from SyracuseCoE, faculty and students at Syracuse University the personalized environmental control systems project, led by H. Ezzat Khalifa, now professor emeritus of mechanical and aerospace engineering, produced several prototype units. Now, Air Innovations is working with SyracuseCoE to redesign the unit for cost-effective commercial manufacture.

“The real core technology that was developed is commercializable, but there are individual components that are not ready for manufacture, so we need to substitute with off-the-shelf technology,” says Michael Wetzel, president and CEO of Air Innovations in Syracuse.

Wetzel says it’s important to understand how the unit will be used in practice: Will employees run it all day long, or only for parts of the day when they want to adjust the temperature? Will people want it integrated into their desk or are they comfortable with it being an object sitting on the floor? “Right now we’re focusing on making sure that the product is acceptable to the market, in terms of the actual capacity for how it will be used and in terms of form and function,” he says.

The hope is to secure funding for a field trial to be conducted in real-world office environments. “We’d like to have about 50 units in place by June 2019 and collect data over six months,” says Wetzel. The data collected will inform capacity and aesthetic decisions about the product, which he hopes to see go commercial by mid-2020.

“What’s really going to drive this product to market is people’s interest in having absolute control over their environment and their productivity,” says Wetzel. “There is a huge opportunity to save money and energy so this product can pay for itself over time.”

Faculty Fellows Research: Developing a Sustainable Battery

A big concern with electric cars is the battery. You’re driving around with about a gallon of flammable liquid in there. If we can replace that with a nonflammable solid and we replace lithium with calcium, then we’re going to have a safer, better battery overall.Professor Ian Hosein

Ian Hosein

Assistant Professor, Department of Biomedical and Chemical Engineering, College of Engineering and Computer Science, Syracuse University

Project
A Solid Polymer Electrolyte from Cross-Linked Polytetrahydrofuran for Calcium Ion Conduction
Developing a solid-state calcium-ion battery that is a cheaper, more powerful, and environmentally safer alternative to lithium-ion batteries.

SyracuseCoE Impact
A Faculty Fellows award from SyracuseCoE funded supplies and equipment to produce and test a prototype electrolyte and demonstrate that it is extremely conductive. “We have integrated the solid electrolyte into a prototype calcium-ion battery, demonstrated that it works, and are currently focusing on improving it,” Hosein says. “We never could have done this without the financial support from SyracuseCoE.”

Backstory
Lithium-ion batteries are a popular energy technology due to lithium’s ability to store energy. Unfortunately, since lithium is mined in far-off places, it’s also expensive. And most lithium-ion batteries contain a liquid electrolyte that is flammable. “There’s a drive to find another ion that has the same energy density but is cheaper and more earth-abundant,” says Hosein.

Nuts and Bolts
Hosein has developed a battery using calcium—one of the most abundant elements in the world, which has double the charge of lithium—and replaced liquid electrolyte with a flame-resistant solid. “It’s essentially a plastic that contains the calcium ions and facilitates transport from one electrode to the other,” he explains. However, because every ion is unique, so is the solid electrolyte required to conduct energy. “It takes a lot of development to get the right combination of calcium source and the right plastic composition to actually get something that’s conductive,” says Hosein.

Practical Application
Having a safer and more powerful battery is important for industries ranging from personal devices to transportation. “Everyone’s heard about cell phone batteries that explode,” says Hosein. “A big concern with electric cars is the battery. You’re driving around with about a gallon of flammable liquid in there. If we can replace that with a nonflammable solid and we replace lithium with calcium, then we’re going to have a safer, better battery overall.” 

Read more about the researchers in the SyracuseCoE Faculty Fellows Program.

2019 U.S. Department of Energy Solar Decathlon: An Encore Winning Presentation

Mixed Use Multi-Family Housing Division First Place Winners

SUNY ESF and Syracuse University SEED – Syracuse Energy Efficient Design

See below for an encore presentation by the first place winning team in the U.S. Department of Energy’s 2019 Solar Decathlon’s Mixed Use Multi-Family Housing Division. Students from SUNY ESF and Syracuse University collaborated this past year in the design of a Net Zero Energy Building, with guidance from several SyracuseCoE industry partners and community stakeholders.

The U.S. Department of Energy Solar Decathlon is a collegiate competition that challenges student teams to design and build highly efficient and innovative buildings powered by renewable energy. The winners of the competition are selected at a pitch event held at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, and reflect proposals that blend design architectural and engineering excellence with innovation, market potential, building efficiency, and smart energy production.

Beyond designing an innovative net-zero energy building, the team also focused on addressing important social, economic, and environmental issues in the City of Syracuse. This presentation summarizes the challenges and follows the project from schematic design into design development and construction documents. Finally, students discussed opportunities for next steps in the project.

Presenters:

Michael Schmidt

Michael Schmidt ​is currently a junior studying Sustainable Construction Management with a minor in Management at SUNY-ESF. He transferred to ESF from Rockland Community College where he earned a degree in Green Buildings Maintenance & Management. Throughout his collegiate career, Mike has developed a strong passion for sustainability in the built environment. Beyond course work, he has worked for two years as a sustainability consultant on a variety of single-family and multifamily projects across the tri-state area.

Erika Gripp

Erika Gripp is one of three student leads on the DOE Solar Decathlon project and is a junior in the Construction Management program at SUNY-ESF. Originally from New Jersey and has been fascinated by the construction process since she was young. Her long term goal is to make a difference in the way buildings are created in relation to the environment.

Noah Townsend

Noah Townsend is a Syracuse native currently attending SUNY College of Environmental Science & Forestry, pursuing his Bachelors in Sustainable Construction Management. He is one of three student leads in this years ESF/SU Solar Decathlon team. In addition, Noah has construction experience working for Consigli and Syracuse Custom Carpentry and Millwork.

Benjamin Schmidt

Benjamin Schmidt grew up in the rural community of Attica, NY just outside of Buffalo. He is currently a senior working towards a B.S. in Environmental Resources Engineering with a minor in Water Resources at SUNY-ESF. Ben leads the engineering team for the DOE Solar Decathlon project, managing the mechanical, electrical, and structural design components. His goal is to produce sustainable designs in buildings and environmental infrastructure.

Ryan Badke

Ryan Badke grew up in Syosset, NY on Long Island and is currently a junior in the Sustainable Constitution Management program at SUNY ESF. He has developed strong passion for sustainability and finding innovative ways to decrease waste products throughout the construction process. Ryan worked as a site superintendent at Park East Construction where he was responsible for all the day to day operations for the renovation of 5 schools throughout the Hicksville School District, while the schools were fully operational. He was also part of ESF’s DOE Solar Decathlon team and worked with the energy team to design renewable energy systems to ensure the design would be net-zero and have a small carbon footprint.

 

 

Up, Up, and Away: Using Drones for Earth Sciences and Geospatial Research and Teaching

What are the approaches, challenges, and successes to using UAVs in classes and for geospatial research?
 
Unoccupied aerial vehicles (UAVs), a.k.a. drones, are emerging technologies that are transforming numerous industries. In the environmental field, UAVs are changing the ways we monitor and collect data on land and over water, revolutionizing the quality and frequency of remote data collection that has previously been conducted via planes or satellites. 
 
In this Research and Technology Forum, we heard from two Syracuse University faculty members who are applying UAVs in their own research, and developing educational programs to share this new technology with undergraduate and graduate students. First, presenters introduced us to different types of UAV technologies, how these technologies are being used by earth and environmental scientists, and provided several local examples from thermal and multispectral monitoring around Syracuse that show how UAV data is improving our understanding at the intersection of hydrology and water quality. 
 
To round out the forum, we also discussed a new course, developed by Drs. Christa Kelleher and Jane Read, aimed at educating the next generation of environmental and earth scientists capable of using these tools when they leave Syracuse.
 

Presenters:

Photo of Christa KelleherProfessor Christa Kelleher

Assistant Professor, Earth Sciences and Civil Engineering, Syracuse University
 
Dr. Kelleher’s research interests are at the interfaces between climate, hydrology, humans, and ecology, particularly using observations and mathematical models to investigate the organization of hydrology and water quality across spatio-temporal scales. Currently, she’s pursuing projects to examine the hydrologic role of vacant lots in urban areas, exploring the hydrologic controls on contaminants of emerging concern across Central New York, and the use of unmanned aerial vehicles to understand patterns of hydrology and water quality in Syracuse and beyond. Christa teaches courses in water science, hydrology, earth systems modeling, and applications of UAVs to environmental and earth sciences.
 
 
 
 
 

Photo of Professor Jane Read

Professor Jane Read

Associate Professor, Geography, Syracuse University
 
Dr. Read specializes in geographic information systems, remote sensing, land use and land cover, and human-environment interactions. Much of her research has focused in the neotropics, including Costa Rica, Brazil, and Guyana, although she has also studied historical land changes in the Adirondacks of New York State, USA and more recently working with colleagues on a digital atlas project – Onondaga Lake: Finding a Restorative Center in Digital Space. She was the Director of Undergraduate Studies for Geography from 2014-2018 and is interested in ways to incorporate active learning into the classroom. She teaches courses in global environmental change, tropical environments, spatial thinking and geospatial technologies (GIS, remote sensing, UAVs), and spatial storytelling.
 
 
 

Research & Technology Forum Series 

SyracuseCoE offers regularly scheduled forums and networking showcasing innovative research, technologies and other opportunities of interest to stakeholders and community members. Past topics have included groundbreaking industry projects to modernize the HVAC systems at the Sistine Chapel, workshops to help state agencies develop funding priorities, and research on the impact of “green” buildings on cognitive function. To receive notice of these events, sign up for email updates at the “Join our mailing list” tab at the bottom right corner of the website. Visit the Research & Technology Forum page to see the archive.