Air Purifiers & Airflows: Minimizing COVID-19 Risk in Classrooms

REGISTER

How do we minimize COVID-19 infection risk when we return to school?

Students are heading back to classrooms. Undetected, there may be one who’s infected by COVID-19. Beyond masking, what are the options for teachers and administrators to minimize the spread of disease through the air?
 
Join us as we talk with Central New York experts about how air can be replaced or purified to help protect classmates and teachers.
 
When do portable air purifiers make a difference if a superspreader is in the room? How do I choose purifiers that will be effective and economical? Where should I place them?
 
How can I understand how air moves in my room? What are the possibilities for rearranging the flow to minimize the risk of disease transmission?

 

Confirmed speakers:

Vinny Lobdell, President, Healthway Family of Brands
 
Vinny Lobdell attended Oswego State for 4 years focusing on Marketing and Economics. Later, he continued on to receive an entrepreneurial masters in partnership with the Entrepreneurs Association at MIT. Lobdell took the leadership role at HealthWay in 2008 and soon thereafter, HealthWay was named to the Inc 500 list of fastest growing companies in America. In 2017, Lobdell co-founded Intellipure, a fast-growing B-to-C brand with a heavy emphasis on creating the best customer experience through handcrafted, individually certified air cleaning systems. Today, HealthWay Family of Brands is recognized as the global leading manufacturer of air cleaning solutions for almost any application. 
 
Over the past 12 years, Lobdell has traveled to 50 countries educating and speaking to industry leaders, governments, and medical professionals on air pollution and the harmful effects that come along with occupying our built environments. In the last 6 months, HealthWay Family of Brands has been called on by NYC Health and Hospital, Atlantic Health Systems, The U.A.E. Ministry of health and hundreds of corporate clients to assist in getting people back to work. Several of these clients represent some of the largest and most sophisticated companies in the world. Healthway remains committed to the Central New York Community and has hired an additional 50 people and added 20,000 square feet of additional manufacturing space in Pulaski NY. 
 
 
Photo of Jianshun ZhangJianshun “Jensen” Zhang, Ph.D., Professor, Department of Mechanical and Aerospace Engineering at Syracuse University and Visiting Professor, School of Architecture and Urban Planning at Nanjing University, China, SyracuseCoE Faculty Fellow
 
Jensen Zhang is Professor and Director of Building Energy and Environmental Systems Laboratory, Department of Mechanical and Aerospace Engineering at Syracuse University (SU), New York, USA, and a Visiting Professor and Chief Researcher of the School of Architecture and Urban Planning at Nanjing University, China. He received his Ph.D. from University of Illinois at Urbana-Champaign and worked at National Research Council of Canada for 8 years before he joined SU.
 
Zhang is a co-leader of the SU-wide research cluster in Energy and Environment that promotes and coordinates multi-disciplinary research on the campus. He is an expert in room air and contaminant distribution, material emissions, air purification, building enclosure performance, and combined heat, air, moisture and pollutant simulations (CHAMPS) for integrative design and intelligent controls of buildings. He has authored/co-authored over 200 technical papers and 3 American national standards. He is Associate Editor of Journal of Science and Technology for the Built Environment (STBE, formerly ASHRAE HVAC&R Research Journal) and The International Journal of Ventilation, and serves as a Member of the Editorial Boards of Building Simulations—an international Journal, International Journal of High-Rise Buildings, and the International Journal of Architectural Frontier Research. He is Fellow of ISIAQ and ASHRAE, and current Chairman of the International Association of Building Physics. 
 
Moderator:
 
Eric A. Schiff, Ph.D., Interim Executive Director, SyracuseCoE and Professor of Physics, Syracuse University
 
Eric Schiff has a long history of leading complex research projects that bring together academics, industry scientists and other partners to discover solutions to society’s energy-related problems. He has been a professor of physics at Syracuse University since 1981, leading interdisciplinary research groups and collaborating with laboratories from other universities and private organizations throughout the world. He has been a principal investigator for externally funded research projects from government agencies (Department of Energy, National Science Foundation and the Empire State Development Corp.) and corporations (United Solar Ovonic LLC, Boeing Inc., First Solar Inc., and SRC Inc.). During his time at Syracuse, he has spent half-year sabbaticals at Xerox Palo Alto Research Center and at Innovalight, Inc., a startup company. From 2014-1017, he served concurrently as a program director at ARPA-E, an agency of the Department of Energy. There he initiated the SHIELD research program of a dozen research projects seeking inexpensive efficiency retrofits for legacy single-pane windows. He also supervised a portfolio of additional projects on solar energy conversion and other energy technologies.
 
Schiff’s own research accomplishments include development of low-mobility solar cell device physics for thin-film solar cells such as perovskites, amorphous silicon, and cadmium telluride. His fundamental physics contributions include work on electronic transport and defects in semiconductors as well as on plasmonics. He is co-author of more than 100 refereed research publications with more than 4,000 citations and he is co-inventor on three U.S. patents. He is a Fellow of the American Physical Society.
 

CHAMPS and Annex68 Meet Again at SyracuseCoE

Syracuse, NY –Leading researchers from around the world convened again at the Syracuse Center of Excellence in Environmental and Energy (SyracuseCoE) to take part in a workshop and meeting on advanced building systems. The events examined the major challenges facing the combined heat, air, moisture and pollutant simulations for the design and operation of sustainable buildings, featured the most recent progress, and discovered opportunities for further collaboration.

The 15th International Forum and Workshop on Combined Heat, Air, Moisture and Pollutant Simulations (CHAMPS) included presentations by the international visitors and Syracuse University faculty and students. The 6th Expert Meeting of IEA-EBC Annex 68 Indoor Air Quality Design and Control in Low Energy Residential Buildings was held on the same day at SyracuseCoE. The two events had a joint public meeting, with topics at the forum including indoor environment quality models, energy performance research, healthy and intelligent buildings strategies and site planning around the effects of climate change.

Both events highlighted the importance of creating high-performance buildings that improve human health and performance while remaining sustainable and reducing building energy use. Research has indicated that people spend up to 80% of their time in indoor environments and 40% of building energy consumption goes to normal operations of heating, cooling and lighting. Industrialization has made it more critical than ever to develop sustainable buildings that boost human quality of life while reducing energy consumption.

15th Annual International Forum and Workshop on CHAMPS Organizers
Danish Technical University, Denmark
Dresden University of Technology, Germany
Nanjing University, China
Syracuse University, U.S.A.
University College of London, U.K.
University de la Rochelle, France
University of Tokyo, Japan

Aims and Scope
CHAMPS 2018 and IEA-EBC Annex-68 will have a joint public meeting in the afternoon of September 30, 2018 to discuss the major challenges facing the combined heat, air, moisture and pollutant simulations for the design and operation of sustainable buildings, highlight the most recent progresses, and identify opportunities for further collaboration. Topics may include:

1. Whole building IEQ and energy performance: Modeling and simulation of combined heat, air, moisture, and pollutant transport processes in and around buildings, and how these processes impact IEQ and building energy efficiency;
2. Healthy and intelligent buildings: Interaction and interdependencies between IEQ and energy efficiency measures, effectiveness of source reduction, ventilation and air cleaning strategies; model-based predictive control, application of internet of things (IOTs) technology in distributed building environmental control;
3. Climate, community and site planning: Climate change effects on IEQ, urban and community planning, micro-urban climate and energy efficiency of building clusters;
4. Building envelope performance: hygrothermal performance of buildings in different climates, leakage and moisture control, envelope-integrated ventilation and energy storage systems, energy and durability;
5. Micro-environment around occupants: demand-based personal environmental control, occupant behavior and impacts on IEQ and energy efficiency;
6. Design studio: Methods and tools for coordinated and integrated urban and building systems design, building information modeling (BIM), CHAMPS simulation framework, software, and optimization techniques, common databases of materials, assemblies, building topologies, climates, and real-world versus design performances.
7. Case studies: Applications of CHAMPS for building systems design and model-based predictive controls.

SyracuseCoE previously hosted the 13th International Forum and Workshop on CHAMPS in 2016. The city of Syracuse is a leader in the international community of indoor air quality and sustainable building technology. Previous events such as the 2018 International Building Physics Conference and upcoming expos like the Emerging Technology Showcase draw global experts and researchers to Syracuse.

Distributed Demand Controlled Ventilation for Improving Indoor Air Quality

The interest in controlling Indoor Air Quality (IAQ) stems from the desire to create and maintain healthy and safe work environments for the many people around the world who work in office buildings. This means being able to immediately detect the presence of pollutants and contaminants, alert those in charge, and mitigate the problem or reduce the impact on the indoor environment.

The Syracuse Center of Excellence headquarters includes a Total Indoor Environmental Quality (TIEQ) laboratory for research in this area. But the new building also serves as an example of the latest technology in IAQ and “intelligent built environmental systems.” An intelligent system is designed and built to monitor the environment, perceive changes in conditions, and make automatic adjustments to the indoor environment to achieve optimal performance.

Current HVAC (heating, ventilating, and air conditioning) technology exists for demand-controlled ventilation (DCV). This regulates the amount of fresh air brought into a building based on the carbon dioxide (CO2) generated by the occupants’ activities. DCV provides good IAQ and is more energy efficient than older systems.

However, a recent study by the National Institute of Standards and Technology, a federal government technology agency, shows that DCV may result in higher levels of unhealthy air pollutants such as the volatile organic compounds (VOC) that are emitted in an office environment from plastics and other synthetic materials, cleaning chemicals, and copying and other office equipment. These “passive emissions” can accumulate in the building during unoccupied periods, when the CO2 levels are expected to be low, prompting the DCV to shut off or drastically reduce the supply of fresh air. Some of them cannot be eliminated from the office environment, so controlling  them becomes important.

Researchers at Syracuse University are taking DCV one step further by investigating distributed demand controlled ventilation (DDCV). In this project, investigators are testing methods that rely on a network of distributed sensors and environmental control systems to adjust the supply of fresh air for each occupant based on local conditions. This approach ensures that each occupant will receive the correct amount of fresh air indicated by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) at reduced energy consumption. The DDCV approach will also address such important considerations as occupancy, activity, floor area, passive emissions and ventilation efficiency in individual occupied spaces. To this end, a mathematical model and experimental methods have been developed to evaluate practical design and control methods, and optimize the mechanical equipment for improved IAQ and lower energy consumption.

The new system, operating at a higher level of intelligence, monitors individual offices and cubicles as well as the interaction of the air throughout larger office spaces. Regulation of fresh air control and contaminant detection is then based on the conditions or needs in the individual areas. This distributed approach to IAQ will achieve maximum comfort, health, and safety for workers throughout a building.